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Abstract

Recently, numerous studies have demonstrated the effectiveness of contrastive
learning (CL), which learns feature representations by pulling in positive samples
while pushing away negative samples. Many successes of CL lie in that there exists
semantic consistency between data augmentations of the same instance. In multi-
view scenarios, however, CL might cause representation degeneration when the
collected multiple views inherently have inconsistent semantic information or their
representations subsequently do not capture sufficient discriminative information.
To address this issue, we propose a novel framework called SEM: SElf-weighted
Multi-view contrastive learning with reconstruction regularization. Specifically,
SEM is a general framework where we propose to first measure the discrepancy be-
tween pairwise representations and then minimize the corresponding self-weighted
contrastive loss, and thus making SEM adaptively strengthen the useful pairwise
views and also weaken the unreliable pairwise views. Meanwhile, we impose a
self-supervised reconstruction term to regularize the hidden features of encoders,
to assist CL in accessing sufficient discriminative information of data. Experiments
on public multi-view datasets verified that SEM can mitigate representation de-
generation in existing CL methods and help them achieve significant performance
improvements. Ablation studies also demonstrated the effectiveness of SEM with
different options of weighting strategies and reconstruction terms.

1 Introduction

Contrastive learning (CL) explicitly enlarges the feature representation similarity between semantic-
relevant samples, and it is adept at capturing high-level semantics while discarding irrelevant infor-
mation. This learning paradigm has facilitated many research and application fields, such as visual
representation [1, 2], text understanding [3, 4], and cross-modal agreement [5, 6, 7]. Samples with
consistent semantics are typically constructed as positive sample pairs for CL loss (e.g., InfoNCE [8]),
which motivates multi-view learning scenarios [9, 10] where researchers focus on exploring common
semantics among multi-view data. However, this kind of data usually is with heterogeneous views
and thus cannot be directly processed by previous CL methods with two shared network branches.

To handle this situation, many multi-view contrastive learning (MCL) methods [11, 12, 13, 14]
have been proposed, which treats multiple views as positive sample pairs and achieves important
progresses in exploring multi-view common semantics (see Sec. 2 for details). Nevertheless, we find
that CL might cause representation degeneration that the representations of high-quality views tend
to degenerate. This may make the MCL methods perform worse than the optimal single view (see
Sec. 3.1 and Sec. 4.1), and thus heavily limiting the usability of MCL in practical scenarios. Although
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several CL work [15, 16] proposed different CL losses aiming at increasing robustness to noise and
made important advances on vision and graph data, our experiments discover that these CL losses are
still fragile in multi-view scenarios as multi-view data are with more diversity than single-view data.
Different from changing CL loss, recent MCL methods [14, 17] focused on changing model structures
and successfully improved the effectiveness of clustering the learned representations. Nevertheless,
representation degeneration still exists in many cases and it requires further solutions.

We find that there could be two reasons leading to representation degeneration in MCL. I) The
quality difference among multiple views. The success of CL is based on the priori condition that the
constructed positive sample pair has semantic consistency, which generally holds in previous CL
applications [1, 5, 8]. Unfortunately, for multi-view learning, the collected views usually have quality
difference and the semantic of positive sample pairs might be inconsistent due to view diversity.
Consequently, CL causes the representation degeneration of high-quality views due to the existence
of low-quality views. II) Losing discriminative information during data processing. Multi-view data
typically involve heterogeneous data forms [9, 18], e.g., different dimensions, modalities, and sparsity.
For achieving MCL, the model needs to transform heterogeneous multi-view data into the same form
with different encoders. However, data transformation could lose discriminative information as this
process has no supervised signals for maintaining information. As a result, CL might miss multiple
views’ common semantics and focus on semantic-irrelevant information due to inductive bias.

Figure 1: The framework of SEM. It leverages
different networks to extract information of dif-
ferent views and conducts the proposed self-
weighted multi-view contrastive learning with
reconstruction regularization.

To this end, we propose SElf-weighted Multi-view con-
trastive learning with reconstruction regularization
(SEM) as shown in Figure 1 that takes the m,n, o-th
views in V views as an example (where Wm,n denotes
the pairwise weight, Lm,n

CL is the contrastive loss, and
Zm is the learned representations). Specifically, SEM
minimizes self-weighted contrastive losses Wm,nLm,n

CL
and Wn,oLn,o

CL after measuring the discrepancy be-
tween pairwise views’ representations, i.e., (Zm,Zn)
and (Zn,Zo), respectively. This makes SEM adaptively
strengthen CL between the useful pairwise views and
also weaken CL between the unreliable pairwise views.
Meanwhile, SEM takes self-supervised reconstruction
objectives as regularization terms (Rm, Rn, and Ro)
on the hidden features (Hm, Hn, and Ho) of encoders
for individual views, respectively. This reconstruction
regularization assists CL in accessing sufficient dis-
criminative information hidden in raw input data (Xm,
Xn, and Xo), which could be implemented by exist-
ing information encoder-decoder models, e.g., AE [19], DAE [20], and MAE [21]. In SEM, the
representations and pairwise weights are alternatively updated to mutually enhance one another.

In summary, our contributions are: I) We propose a novel general framework SEM that leverages
self-weighting and information reconstruction to address representation degeneration in MCL. II) We
provide three options with different advantages to implement the weighting strategy of SEM including
class mutual information, JS divergence, and maximum mean discrepancy. III) Theoretical and
experimental analysis verified the effectiveness of SEM. It helps many CL methods (e.g., InfoNCE [8],
RINCE [15], and PSCL [16]) achieve significant performance improvements in multi-view scenarios.

2 Related Work

Contrastive learning (CL) As a popular self-supervised learning paradigm, CL focuses on learning
semantically informative representations for downstream tasks [22, 23, 24, 25]. The most widely
used loss function is InfoNCE [8] which pulls in the representations between positive sample pairs
while pushing away that between negative sample pairs. Some work have attempted to explain the
reasons for the success of applying InfoNCE, e.g., from perspectives of mutual information [8, 26],
task-dependent view [27], or deep metric learning [28, 29]. Furthermore, [30, 31] pointed out to
conduct CL with reconstruction regularization to achieve robust representations for downstream
tasks. RINCE [15] (a short name of Robust InfoNCE) is a variant of InfoNCE contrastive loss
that considers noise in false positive sample pairs. The recent work [16] investigates CL without
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(a) ACC vs. Views (b) Loss and similarity vs. Epoch (c) ACC vs. Epoch

Figure 2: (a) Clustering accuracy of individual views on Caltech dataset. (b) Contrastive loss and representation
similarity between view 1 and view 4. (c) Clustering accuracy of view 1 and view 4 during contrastive learning.

conditional independence assumption on positive sample pairs and proposes a population spectral
contrastive loss (we call it PSCL for short). Despite important progresses have been made, in this
work, we discover that these CL losses are still fragile in multi-view scenarios where data qualities
are hard to be guaranteed, and even the reconstruction regularized CL is not enough.

Multi-view contrastive learning (MCL) Different from many CL methods that usually generate two
inputs by data augmentation [32], MCL aims to handle multi-view data widely exiting in real-world
applications. Multi-view data often contain more than two views/modalities and they naturally form
multiple inputs [33, 34, 35]. Since the semantic consistency among multiple views is not guaranteed,
it is challenging to capture the useful information in multi-view data, while considering the side effects
of harmful information. Therefore, MCL attracts increasing attention in recent years [36, 37, 38].
For example, CMC [11] empirically shows that MCL performed with more scene views obtains the
better representations with semantic information. DCP [39] leverages the maximization of mutual
information to conduct consistency learning across different views and aims to achieve a provable
sufficient and minimal representation. MFLVC [14] observes the conflict between consistency and
reconstruction objectives in encoder-decoder frameworks and proposes to learn multi-level features
for multiple views. DSIMVC [17] establishes a theoretical framework to reduce the risk of clustering
performance degradation from semantic inconsistent views. Although satisfactory results are achieved
in many cases, the representation degeneration caused by CL is still not well considered and addressed.
In this paper, we point out that the representation degeneration could seriously limit the application
of CL in multi-view scenarios, and propose the discrepancy-based self-weighted MCL to address it.

Notations This paper leverages bold uppercase characters and bold lowercase characters to denote
matrices and vectors, respectively. Operator ∥ · ∥2 denotes vector ℓ2-norm and operator ∥ · ∥F is
matrix F -norm. {xv

i ∈ Xv}v=1,2,...,V
i=1,2,...,N denotes the multi-view dataset with N samples in V views.

3 Methodology

This section first illustrates the phenomenon of representation degeneration in multi-view contrastive
learning. To address this issue, we then establish a general framework of SEM: SElf-weighed Multi-
view contrastive learning with reconstruction regularization. To implement the SEM framework, we
further provide different options of weighing strategy, contrastive loss, and reconstruction term.

3.1 Motivation: Representation Degeneration in Multi-View Contrastive Learning

Researchers proposed many contrastive learning approaches and also achieved plenty of progress
in multi-view learning. However, multi-view contrastive learning might result in the representation
degeneration of high-quality views (i.e., those views contain rich semantic information) due to the
diversity of multi-view data. Specifically, we illustrate it in Figure 2 that takes a popular multi-view
dataset Caltech [40] (6 views) as an example. We leverage unsupervised linear clustering accuracy
obtained by K-Means [41] to evaluate the representation quality of containing class-level semantics.

Firstly, we leverage self-supervised autoencoders (the setting is shown in Appendix B) to pretrain the
representations of each view’s data. In Figure 2(a), one can find that different views inherently have
different levels of discriminative information and exhibit different qualities, where the worst (view 1)
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and the best (view 4) have a large gap. Then, we adopt InfoNCE loss to perform contrastive learning
between view 1 and view 4 in Figure 2(b), and record the clustering accuracy of their representations
in Figure 2(c). We can observe that InfoNCE loss is well-minimized, which makes the representation
similarity (evaluated by cosine) between view 1 and view 4 converge to 1.0. The performance on
view 1 gradually increases. Nevertheless, the cost is that the representations of view 4 degenerate, on
which the useful discriminative information reduces and thus the performance gradually decreases.

In multi-view learning, quality difference among multiple views is a common phenomenon. However,
the representation degeneration in multi-view contrastive learning might make the representations of
some high-quality views tend to be mediocre and thus miss their useful discriminative information.

3.2 Self-Weighted Multi-View Contrastive Learning with Reconstruction Regularization

To mitigate representation degeneration in multi-view contrastive learning, we propose a simple but
effective framework called SEM: SElf-weighted Multi-view contrastive learning with reconstruction
regularization as shown in Figure 1. Specifically, given view-specific data Xv ∈ RN×dv , we let
Zv ∈ RN×z denote the corresponding new representations learned by a view-specific encoder.
Between Xv and Zv, we record a precursor state of representations as Hv ∈ RN×hv (termed as
hidden features), and the encoder is partitioned into two parts (the front and back parts are stacked
and denoted as fv and gv sequentially). For the v-th view, we let Ψv and Φv denote the network
parameters of fv and gv , respectively, and then the view-specific model can be formulated as follows:

Zv = gv(Hv; Φv) = gv(fv(Xv; Ψv); Φv). (1)
In SEM, we leverage Lm,n

CL (Zm,Zn) to denote a contrastive loss2, and let λ > 0 denote a trade-off
coefficient on regularization terms. Then, SEM is trained by minimizing the following objective:∑

m,n
Wm,nLm,n

CL (Zm,Zn) + λ
∑

v
Rv(Xv,Hv), (2)

where Wm,n is the pairwise weight between the m-th and the n-th views, and Rv(Xv,Hv) denotes
the reconstruction regularization on Hv . We define D(Zm,Zn) as the discrepancy between Zm and
Zn and denote F as a negative correlation function. Then, in SEM, the pairwise weight is updated by

Wm,n = F(D(Zm,Zn)). (3)
Self-weighting In unsupervised settings, it is hard to know which representations within {Zv}Vv=1
contain useful semantic information and which are with more noise. To mitigate the representation
degeneration caused by contrastive learning, SEM needs to be adaptive to quality difference among
multiple views. Therefore, different from using equal-sum manner [11, 14, 17] (e.g.,

∑
m,n L

m,n
CL ),

we propose to use the pairwise weighted multi-view contrastive loss, i.e.,
∑

m,n Wm,nLm,n
CL . Here,

Wm,n leverages the discrepancy to achieve the adaptive self-weighting. Concretely, if two views are
useful pairwise views and both with informative semantics, contrastive learning between them is
adaptively strengthened; if two views are unreliable pairwise views (for example, one or two of them
are with less informative semantics), contrastive learning between them is adaptively weakened.

Reconstruction regularization In Eq. (2), Rv(Xv,Hv) acts as a self-supervised objective to transfer
as much discriminative information as possible from Xv to Hv. When we record Hv as the hidden
features in encoder networks, the information transfer path can be described as Xv → Hv → Zv, v ∈
{1, 2, . . . , V }. However, information losing might occur in the processing of Xv → Hv such that
discriminative information from some views’ data is lost, and thus making contrastive learning among
{Zv}Vv=1 focus on harmful noise instead of common semantics across multiple views. To this end, on
hidden features Hv, our SEM leverages Xv to build the reconstruction regularization Rv(Xv,Hv)
to assist contrastive learning in accessing sufficient discriminative information from raw data.

2Lm,n
CL (Zm,Zn) can be easily replaced by previous contrastive losses, e.g., InfoNCE [8], RINCE [15], and

PSCL [16]. Let P denote the set of positive sample pairs and N is the set of negative sample pairs in the m,n-th
views, q and α are hyper-parameters of RINCE, then the three contrastive losses could be formulated as follows:

Lm,n
InfoNCE = −Es+∈P

[
s+ − log

(
es

+

+
∑

s−∈N
es

−)]
,

Lm,n
RINCE = −Es+∈P

[
1

q
· eq·s

+

− 1

q
·
(
α ·

(
es

+

+
∑

s−∈N
es

−))q
]
,

Lm,n
PSCL = −Es+∈P

[
2 · s+

]
+ Es−∈N

[
(s−)2

]
,

where s+ (s−) denotes the cosine distance between the representations of positive (negative) sample pair.
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3.3 Different Options for Implementing the SEM Framework

The crucial components of our proposed SEM as Eq. (2) include the weighting strategy Wm,n,
contrastive loss Lm,n

CL , and regularization term Rv . Next, we concentrate on the implementations of
Wm,n (including JSD, MMD, and CMI) and briefly introduce the implementations of Lm,n

CL and Rv .

Discrepancy measurements of weighting strategy When implementing Wm,n = F(D(Zm,Zn))
in Eq. (3), many methods can measure the discrepancy D(Zm,Zn). Firstly, we can transfer represen-
tations to a probability distribution and leverage Jensen-Shannon divergence (JSD) to compute the
discrepancy DJSD(Zm,Zn). The advantages of JSD are its symmetry and simplicity, but it might be
inapplicable when two distributions are non-overlapping. Furthermore, we can leverage maximum
mean discrepancy (MMD) as the second method to obtain the discrepancy DMMD(Zm,Zn). MMD
can effectively measure non-overlapping two distributions, but it has higher complexity than JSD3.

Actually, both JSD and MMD leverage all information of representations Zm and Zn. However, the
semantic-irrelevant information or random noise might also be embedded in Zm and Zn. Moreover,
what we expect to obtain is the mutual relation of their most representative semantic information. To
this end, we propose Class Mutual Information (CMI) as the third method to obtain the discrepancy
DCMI(Z

m,Zn). To be specific, since it is difficult to accurately estimate the mutual information
(denoted as I) for multi-dimensional continuous variables I(Zm;Zn), we denote ym and yn as
1-dimensional discrete vectors and change estimating I(Zm;Zn) to computing I(ym;yn) such that:

Wm,n ≈ F(1/I(Zm;Zn)) ≈ F(1/I(ym;yn)), s.t. argmax
ym,yn

I(Zm;ym) + I(Zn;yn). (4)

Intuitively, discrete class information in Zv (v ∈ {m,n}) is 1-dimensional as well as the most repre-
sentative information. Hence, we can optimize K-Means objective to extract the class information:

Yv∗ = argmax
Yv,Cv

∥Zv −YvCv∥2F , s.t.Yv(Yv)
T
= IN ,Yv ∈ {0, 1}N×K , (5)

where Cv ∈ RK×z denotes the K cluster centers of Zv. Yv∗ ∈ {0, 1}N×K is the indicator matrix
that can be further transformed to 1-dimensional discrete vector yv by defining yvi := argmaxj y

v∗
ij

where yvi ∈ yv, yv∗ij ∈ Yv∗. In this way, the class information in Zm and Zn can be compressed
into ym and yn, respectively. Then, the class mutual information I(ym;yn) is normalized and the
discrepancy measurement DCMI(Z

m,Zn) between pairwise views is defined as follows:

DCMI(Z
m,Zn) =

H(ym) +H(yn)

2 · I(ym;yn)
, (6)

where H(ym) = −
∑N

i=1 p(y
m
i ) log p(ymi ) is the cross-entropy of ym. This design of CMI has at

least two advantages: 1) It is conducive to maintaining the representative class information while
filtering out noise information; 2) Calculation is easy and owns better physical meaning.

Finally, it is also flexible to implement the negative correlation function F . Considering Wm,n ≥ 0,
we base on the three different discrepancies and simply give the following weighting strategies:

Wm,n
CMI = FCMI(DCMI(Z

m,Zn)) = e1/DCMI(Z
m,Zn) − 1,

Wm,n
JSD = FJSD(DJSD(Zm,Zn)) = e1−DJSD(Zm,Zn) − 1,

Wm,n
MMD = FMMD(DMMD(Zm,Zn)) = e−DMMD(Zm,Zn).

(7)

Compatibility for contrastive learning When implementing the contrastive loss Lm,n
CL , it should

be pointed out that multi-view contrastive learning usually has to handle more than two views (i.e.,

3We write ẑmi ∈ Ẑm = Softmax(Zm). k(zi, zj) denotes the inner product of ϕ(zi) and ϕ(zj), where
ϕ(·) denotes the mapping (e.g., by Gaussian kernel) to project representations into Reproducing Kernel Hilbert
Space (RKHS). Then, DJSD(Zm,Zn) and DMMD(Zm,Zn) can be formulated as follows:

DJSD(Zm,Zn) =
1

2

N∑
i=1

p(ẑmi ) log

(
2 · p(ẑmi )

p(ẑmi ) + p(ẑni )

)
+

1

2

N∑
i=1

p(ẑni ) log

(
2 · p(ẑni )

p(ẑni ) + p(ẑmi )

)
,

DMMD(Zm,Zn) =
1

N2

[
N∑
i=1

N∑
j=1

k(zmi , zmj ) +

N∑
i=1

N∑
j=1

k(zni , z
n
j )− 2

N∑
i=1

N∑
j=1

k(zmi , znj )

]
.
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{Zv}Vv=1, V > 2), which is different from two-view setting (e.g., {Z1,Z2}) in traditional contrastive
learning. To make our SEM framework be compatible with previous contrastive learning methods,
we construct positive/negative sample pairs as follows. Specifically, for two views {zmi ∈ Zm, znj ∈
Zn}, the positive sample pairs are {zmi , zni }i=1,...,N ; for any zmi , its negative sample pairs are
{zmi , zvj}

v=m,n
j ̸=i . Cosine with a temperature parameter τ is leveraged to measure the representation

distance between pairs, i.e., s = 1/τ · ⟨zmi , znj ⟩/∥zmi ∥2∥znj ∥2. Then, we compute the contrastive loss
between two views and sum all combinations as Eq. (2). We formulated three contrastive losses in
Sec. 3.2, and the experiments in Sec. 4.1 will verify the compatibility of our SEM framework to them.

Reconstruction regularization When implementing the regularization term Rv(Xv,Hv) in Eq. (2),
we are motivated by the information encoding-decoding process [14, 19, 30], and stack a view-specific
decoder fv

− with network parameter Ωv on each view’s Hv to perform data recovery of Xv. In this
way, the regularization term in SEM can be implemented with the reconstruction loss of autoencoders4,
whose encoder-decoder models can make hidden features preserve discriminative information of data.
When decoder generally rebuilds Xv with Hv, we can believe that Hv compresses the sufficient
information of Xv , for promoting contrastive learning fully access discriminative information of data.

Algorithm 1: Self-weighted multi-view contrastive learning with reconstruction regularization

Input: Dataset {Xv}Vv=1, Training epochs E, Step size S, Batch size n, Hyper-parameter λ
Initialize {Ψv,Ωv}Vv=1 by Eq. (8) and initialize {Wm,n}Vm,n=1 with {Hv}Vv=1 like Eq. (7)
for e ∈ {1, 2, . . . , E} do

for b ∈ {1, 2, . . . , N/n} do
Pick mini-batch data {{xv

i }bni=(b−1)n+1}
V
v=1 from {Xv}Vv=1

Compute the gradient of loss via Eq. (2) on the mini-batch data
Update {Φv,Ψv,Ωv}Vv=1 via Adam [42] optimizer

if mod(e, S) == 0 then
Update {Wm,n}Vm,n=1 with {Zv}Vv=1 by Eq. (7)

Output: Model parameters {Φv,Ψv}Vv=1

The training steps of SEM is summarized in Algorithm 1, where representations and weights are
updated alternatively to make them promote each other. E denotes total training epochs, and the step
size S denotes the number of training epochs after each update of pairwise weights. As we cannot
obtain meaningful {yv}Vv=1 before we start training neural networks, we first obtain meaningful
{Hv}Vv=1 by pre-training the model with Eq. (8), and then initialize {Wm,n}Vm,n=1 with {Hv}Vv=1.

3.4 Theoretical Analysis

In this part, we theoretically analyze the mechanism of SEM in exploring mutual information among
multiple views while mitigating representation degeneration. All proofs are given in Appendix A.

Considering SEM with InfoNCE loss and CMI weighting strategy, we have the following theorem in-
dicating that minimizing the self-weighted contrastive loss keeps maximizing the mutual information
between useful pairwise views, as well as avoiding the effects between unreliable pairwise views.

4We borrow the core ideas of information reconstruction applied in vanilla autoencoder (AE [19]), denoising
autoencoder (DAE [20]), and masked autoencoder (MAE [21]) and provide three reconstruction regularization
options. In a same form, the three kinds of reconstruction loss functions could be formulated as follows:

Rv
AE(X

v,Hv) = ∥Xv − fv
−(H

v; Ωv)∥2F = ∥Xv − fv
−(f

v(Xv; Ψv); Ωv)∥2F ,

Rv
DAE(X

v, H̃v) =
∥∥∥Xv − fv

−(H̃
v; Ωv)

∥∥∥2

F
= ∥Xv − fv

−(f
v(Xv + ϵ; Ψv); Ωv)∥2F ,

Rv
MAE(X

v, Ḧv) =
∥∥∥Xv − fv

−(Ḧ
v; Ωv)

∥∥∥2

F
= ∥Xv − fv

−(f
v(Xv ⊙A; Ψv); Ωv)∥2F ,

(8)

where Xv + ϵ denotes the data disturbed by random Gaussian noise ϵ ∈ RN×dv in DAE. Xv ⊙A is the data
masked by random 0 − 1 matrix A ∈ {0, 1}N×dv in MAE. H̃v and Ḧv denote the representations inferred
from data Xv + ϵ and Xv ⊙A in DAE and MAE, respectively.

6



Theorem 1. For any three views (v ∈ {m,n, o}), if class mutual information only exists in two views,
e.g., I(ym;yo) → 0, I(yn;yo) → 0, and I(ym;yn) = δ, δ > 0, we have minimizing the weighted
InfoNCE losses Wm,nLm,n

InfoNCE(Z
m,Zn)+Wm,oLm,o

InfoNCE(Z
m,Zo)+Wn,oLn,o

InfoNCE(Z
n,Zo)

is equivalent to maximizing the mutual information between the two views (eδ/ logN − 1)I(Zm;Zn).

Combining with the information losing of each layer through encoder networks, the following
theorem further reveals that reconstruction regularization on the hidden features Hv is conducive to
alleviating the losing of discriminative semantic information through data transformation. Hence, we
treat the layer output closest to Zv in encoders as hidden features to maximize

∏Lm

l=tm+1(1− γm
l )

and
∏Ln

l=tn+1(1− γn
l ), aiming at maintaining useful semantic information for contrastive learning.

Theorem 2. For any two views (v ∈ {m,n}) with positive class mutual information, denoting
Lv as the total layer number of the v-th view’s encoder network before representation Zv, the l-th
layer has the information losing rate γv

l ≥ 0. If S is an oracle variable that contains and only
contains multiple views’ discriminative semantic information, and Hv is the tv-th layer’s features, we
have minimizing the regularized loss Wm,nLm,n

InfoNCE(Z
m,Zn) + λ

∑
v Rv(Xv,Hv) is expected

to obtain I(S;Zm;Zn) ≤ min{I(S;Xm) ·
∏Lm

l=tm+1(1− γm
l ), I(S;Xn) ·

∏Ln

l=tn+1(1− γn
l )}.

4 Experiments

This section validates the effectiveness of our SEM. Specifically, we first conduct comparison experi-
ments on state-of-the-art contrastive learning baselines and SEM with three options of contrastive
losses (i.e., LInfoNCE ,LPSCL,LRINCE). We then conduct ablation studies with three options of
weighting strategies (i.e., WCMI ,WJSD,WMMD), as well as with three options of reconstruction
terms (i.e., RAE ,RDAE ,RMAE). Evaluation is built on the concatenation of all views’ representa-
tions learned by methods. Finally, we show SEM’s training process and its hyper-parameter analysis.
We provided more experimental results as well as all implementation details of SEM in Appendix.

Table 1: Information of datasets
Name View Size Class
DHA 2 483 23
CCV 3 6,773 20
NUSWIDE 5 5,000 5
Caltech 6 1,400 7
YoutubeVideo 3 101,499 31

Datasets Our experiments employ five open-source
multi-view datasets. Their information is shown in Ta-
ble 1, where DHA [43] is a depth-included human ac-
tion dataset where each action has RGB and depth fea-
tures; CCV [44] refers to the columbia consumer video
database whose samples are described with SIFT, STIP,
and MFCC features; NUSWIDE [45] collects web im-
ages with multiple views (color histogram, block-wise
color moments, color correlogram, edge direction histogram, and wavelet texture); Caltech [40] is a
widely-used image dataset which leverages six views (Gabor, Wavelet moments, CENTRIST, HOG,
GIST, and LBP) to represent samples; YoutubeVideo [46] is a large-scale dataset where each sample
has three views including cuboids histogram, HOG, and vision misc. These datasets are diverse in
forms and are often organized to comprehensively evaluate the performance of multi-view methods.

4.1 Comparison Experiments on Contrastive Learning

Baselines K-Means-BSV denotes K-Means clustering results on the best single-view of raw data,
and we leverage this baseline to investigate the representation degeneration in comparison methods.
InfoNCE [8], PSCL [16], and RINCE [15] are three kinds of CL methods. Since their original versions
are designed to handle single views, we extended them to multi-view scenarios as did in [11, 17].
CMC [11], DCP [39], MFLVC [14], and DSIMVC [17] are four kinds of MCL methods. We evaluate
our SEM with different contrastive losses (i.e., SEM+InfoNCE, SEM+PSCL, and SEM+RINCE),
where the weighting strategy and reconstruction term are fixed to WCMI and RAE , respectively.

We leverage the linear clustering method K-Means to evaluate the performance of learning represen-
tations and report the average results of 10 runs in Table 2. The results indicate that: I) Our SEM
framework is compatible with different contrastive losses (e.g., InfoNCE, PSCL, and RINCE) and
we can clearly observe that SEM+InfoNCE/PSCL/RINCE successfully improve the baselines for
large margins. For instance, SEM+InfoNCE respectively outperforms InfoNCE by about 25%, 13%,
4%, 7%, 12% ACC on the five datasets. II) MCL approaches could access the semantic information
from multiple views, and thus outperforming that from single views. However, a side effect is
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Table 2: Linear clustering performance evaluated by ACC and NMI (mean±std%)
Method DHA CCV NUSWIDE Caltech YoutubeVideo

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
K-Means-BSV 66.6±2.6 78.0±1.3 19.5±0.3 17.8±0.3 39.7±0.0 11.6±0.0 85.1±0.1 75.6±0.1 16.5±0.6 15.9±0.4
InfoNCE [8] 54.9±3.8 77.7±2.1 25.8±0.9 25.9±0.7 56.3±2.2 30.3±1.4 79.9±1.0 71.4±0.9 19.6±0.1 19.7±0.0
PSCL [16] 39.8±2.8 72.9±2.0 21.5±1.6 24.3±1.0 53.4±0.4 27.4±0.5 67.8±2.8 69.5±2.8 15.4±0.3 14.3±0.5
RINCE [15] 49.9±6.2 76.3±2.6 22.5±0.4 23.5±0.2 56.6±1.4 30.8±1.3 80.3±2.2 72.0±2.2 14.7±0.3 13.6±0.2
CMC [11] 65.0±2.1 79.2±1.3 21.3±0.4 21.8±0.6 56.2±1.5 24.7±0.9 72.7±1.4 60.3±1.4 19.4±0.3 19.6±0.1
DCP [39] 69.8±2.2 82.9±1.6 24.1±1.2 20.6±0.9 48.1±1.4 24.5±1.1 69.6±6.6 66.2±5.3 14.0±0.3 12.3±0.4
MFLVC [14] 70.7±1.4 81.4±0.8 31.6±0.0 31.3±0.0 55.9±0.0 27.4±0.0 77.1±0.5 67.1±0.6 18.3±0.1 18.7±0.2
DSIMVC [17] 63.8±3.0 77.2±1.7 31.8±0.9 30.8±0.6 56.7±2.3 28.0±1.6 76.9±1.7 67.3±1.3 18.9±0.3 18.7±0.2
SEM+InfoNCE 80.9±1.9 84.1±0.9 39.4±0.7 35.5±0.4 60.4±0.4 34.9±0.7 87.2±0.3 80.3±0.5 31.3±1.1 31.1±0.9
SEM+PSCL 69.7±4.2 81.4±1.6 39.3±1.1 35.9±0.6 57.8±1.4 32.6±0.9 86.3±1.7 78.6±2.1 32.2±0.7 32.2±0.6
SEM+RINCE 76.3±1.3 82.8±0.7 38.9±0.9 34.6±0.5 60.6±0.7 35.6±1.3 85.4±1.4 76.7±2.2 29.8±0.5 29.5±0.5

that contrastive learning directly increases the feature representation similarity of multiple views,
which might obscure useful discriminative information hidden in high-quality views and lead to the
representation degeneration. For example, on DHA and Caltech, results on many MCL methods (e.g.,
PSCL, RINCE, CMC, and MFLVC) are worse than the single-view baseline K-Means-BSV. III) Our
SEM not only outperforms all these MCL methods but also mitigates the representation degeneration
in MCL, e.g., SEM+PSCL respectively outperforms K-Means-BSV by about 3%, 20%, 18%, 1%,
16% ACC on the five datasets. This is because the framework of SEM is adaptive to multiple views’
qualities, which can reduce the side effect between unreliable views with inconsistent information,
for better extracting discriminative information and consistent semantics among useful views.

Figure 3: Classification performance on DHA.

Figure 4: Classification performance on CCV.

Additionally, we lever-
age the linear classifica-
tion method SVM [47]
to evaluate the perfor-
mance of MCL methods
to learn representations,
where we only use 30%
of the learned representa-
tions for the training set
and the rest for the test
set. Figures 3 and 4 show
the classification perfor-
mance on DHA and CCV,
respectively. Our SEM im-
proves the baseline meth-
ods (especially for PSCL
and RINCE) and consistently outperforms other MCL methods (such as CMC, DCP, MFLVC,
and DSIMVC). Since contrastive learning usually discards the information which is irrelevant to
optimization objectives, the results further indicate that the representations learned by MCL are
classification-friendly, which generally focus on catching class-level semantics among multiple views.

4.2 Ablation Experiments on Self-Weighting Strategy and Reconstruction Regularization

This part presents the ablation experiments to investigate the effectiveness of different weighting
strategies WCMI/JSD/MMD and reconstruction terms RAE/DAE/MAE in our SEM framework.

Table 3: Clustering accuracy (%) of SEM with differ-
ent options of weighting strategy W on two datasets

DHA CCV
SEM w/o W 71.3 33.5
SEM w/ WCMI 80.9 (↑ 9.6) 39.4 (↑ 5.9)
SEM w/ WJSD 80.5 (↑ 9.2) 35.6 (↑ 2.1)
SEM w/ WMMD 84.4 (↑ 13.1) 33.9 (↑ 0.4)

Table 4: Clustering accuracy (%) of SEM with differ-
ent options of reconstruction term R on two datasets

DHA CCV
SEM w/o R 60.5 28.7
SEM w/ RAE 80.9 (↑ 20.4) 39.4 (↑ 10.7)
SEM w/ RDAE 81.5 (↑ 21.0) 38.4 (↑ 9.7)
SEM w/ RMAE 83.0 (↑ 22.5) 39.5 (↑ 10.8)

Table 3 reports the linear clustering performance (evaluated by ACC) of our SEM framework
without self-weighting strategy (i.e., SEM w/o W) and that with three weighting strategies (i.e.,
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(a) Weight vs. Iteration (b) Loss vs. Epoch (c) ACC vs. Iteration

Figure 5: (a) The change trend of weights W1,4 and W4,5 in SEM. (b) Loss values L1,4
InfoNCE and L4,5

InfoNCE
during contrastive learning. (c) Clustering accuracy on the learned representations of view 1, view 4, and view 5.

WCMI ,WJSD,WMMD), where the contrastive loss and reconstruction term are fixed to LInfoNCE

and RAE , respectively. Compared with SEM w/o W (this setting is the reconstruction regularized
multi-view contrastive learning) that equally treats contrastive learning between any two views,
SEM w/ WCMI/JSD/MMD can adaptively weight the contrastive learning according to specific two
views and thus all these three variants of SEM obtain significant improvements. For example, SEM w/
WMMD has a 13.1% improvement on DHA and SEM w/ WCMI has a 5.9% improvement on CCV.
Results on more datasets and time costs are shown in Appendix C, where we find that the proposed
weighting strategy of class mutual information WCMI generally achieves the best performance on
accuracy and time consumption among the three options of weighting strategy.

Table 4 reports the linear clustering performance (evaluated by ACC) of our SEM framework
without reconstruction regularization (i.e., SEM w/o R) and that with three reconstruction terms (i.e.,
RAE ,RDAE ,RMAE), where the contrastive loss and weighting strategy are fixed to LInfoNCE and
WCMI , respectively. We can easily find that the proposed SEM with reconstruction terms obviously
outperforms that without reconstruction terms. For instance, compared with SEM w/o R, SEM
w/ WMAE has 22.5% and 10.8% improvements on DHA and CCV, respectively. This is because
the reconstruction regularization makes the hidden features {Hv}Vv=1 avoid losing discriminative
information, which promotes the multi-view contrastive learning performed on subsequent {Zv}Vv=1.
Meanwhile, SEM w/ RMAE and SEM w/ RDAE perform better than SEM w/ RAE . This is because,
compared with vanilla AE, DAE or MAE (by adding noise or masking on raw data) can make our
model more conducive to removing semantic-irrelevant noise as well as capturing hidden patterns.

4.3 Experimental Analysis on Mechanism of SEM

This part presents the visualization and analysis on SEM to give an intuition of its behavior and
mechanism, where the combination of LInfoNCE+WCMI+RAE is taken as an example.

Let’s first recall the views of Caltech dataset in Figure 2(a), we can consider that view 4 and view 5
are high-quality views, while view 1 is a low-quality view. The performance relation among them is
ACCview 4 > ACCview 5 > ACCview 1. In Figure 2(c), view 4’s representation degeneration occurs.

Figure 5 shows the pairwise weights, losses, and clustering accuracy on Caltech dataset during SEM’s
training process, where 1 iteration corresponds to 100 epochs, i.e., the step size is set to 100 epochs.
Our SEM is a self-weighted multi-view contrastive learning framework that automatically infers
different weights for different pairwise views as shown in Figure 5(a), where we can observe that
weights W4,5 > W1,4 and they were dynamically updated for 4 times. As a result, contrastive
learning between view 4 and view 5 is strengthened by W4,5, while contrastive learning between
view 1 and view 4 is weakened by W1,4. Meanwhile, loss L4,5

InfoNCE is minimized earlier than loss
L1,4
InfoNCE as shown in Figure 5(b). In other words, since the mutual effect between view 4 and view

5 is strengthened, the effect of view 1 on view 4/view 5 is weakened such that view 4/view 5 does
not degenerate. At the same time, the effect of view 4/view 5 on view 1 remains and promotes the
representation learning of view 1. Consequently, all views’ performance in Figure 5(c) increases
through our SEM, and the representation degeneration of view 4 occurring in Figure 2(c) is mitigated.
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Hyper-parameter analysis Since different datasets have different levels of reconstruction er-
rors, the trade-off coefficient λ is introduced to balance the contrastive learning and infor-
mation recovery in our SEM framework. In Figure 6(a), we change λ within the range of
[10−3, 10−2, 10−1, 100, 101, 102, 103] and report the clustering accuracy tested on representations.
The experimental results indicate that SEM is not sensitive to λ in [10−1, 101]. In our experiments, λ
is consistently set to 1 for all the five datasets. Regarding self-supervised learning, frameworks with
fewer manually set hyper-parameters might be more convenient for their applications.

Figure 6: (a) ACC vs. λ. (b) ACC vs. K.

Additionally, we investigate the
effect of cluster number when
the weight strategy of our SEM
framework is selected as WCMI

which needs to pre-define the
cluster number when applying
K-Means algorithm. As shown
in Figure 6(b), when comput-
ing the class mutual informa-
tion, we change the number
of clusters within the range of
[K/2,K, 2K, 4K] where K de-
notes the truth class number of
multi-view datasets. Compared with K, K/2 leads to more coarse-grained class mutual information,
while 2K and 4K come in more fine-grained class mutual information. The experimental results
demonstrate that SEM with WCMI is not sensitive to the choices of cluster number.

5 Conclusion

In this paper, we showcase that the representation degeneration could seriously limit the application of
contrastive learning in multi-view scenarios. To mitigate this issue, we propose self-weighted multi-
view contrastive learning with reconstruction regularization (SEM), which is a general framework
that is compatible with different options of the contrastive loss, weighting strategy, and reconstruction
term. Theoretical and experimental analysis verified the effectiveness of SEM, and it can significantly
improve many existing contrastive learning methods in multi-view scenarios. Moreover, ablation
studies indicated that SEM is effective with different weighting strategies and reconstruction terms.

Our future work is to extend the proposed SEM to be useful not only for multi-view scenarios, but also
for other contrastive learning based domains, such as contrastive learning in sequences. Conceptually,
the limitation of the self-weighting strategy is that it is more effective when there are over two
views. When there are only two views, the self-weighted multi-view contrastive learning framework
transforms into traditional contrastive learning but with reconstruction regularization. Therefore,
another future work is to extend the view-level weighting of SEM to sample-level weighting.
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We provide supplementary materials for the submission of Self-Weighted Contrastive Learning
among Multiple Views for Mitigating Representation Degeneration. Specifically, Appendix A (Page-
1) shows all theoretical proofs and complexity analysis of SEM; Appendix B (Page-7) includes the
settings in experiments; Appendix C (Page-8) lists additional experimental results and provides
more experimental analysis, which are not shown in the paper due to space; Appendix D (Page-10)
discusses the limitations and future work of this paper. The code implementation, trained models,
and datasets used in our method are provided in https://github.com/SubmissionsIn/SEM.

Appendix A Theoretical Analysis

Theorem 1. For any three views (v ∈ {m,n, o}), if class mutual information only exists in two views,
e.g., I(ym;yo) → 0, I(yn;yo) → 0, and I(ym;yn) = δ, δ > 0, we have minimizing the weighted
InfoNCE losses Wm,nLm,n

InfoNCE(Z
m,Zn)+Wm,oLm,o

InfoNCE(Z
m,Zo)+Wn,oLn,o

InfoNCE(Z
n,Zo)

is equivalent to maximizing the mutual information between the two views (eδ/ logN − 1)I(Zm;Zn).

Proof. According to Proposition 1, minimizing the weighted InfoNCE losses becomes maximizing
the following weighted mutual information:

Wm,nI(Zm;Zn) +Wm,oI(Zm;Zo) +Wn,oI(Zn;Zo). (1)

Furthermore, based on the definition of CMI weighing strategy, we have

Wm,n = e
2·I(ym;yn)

H(ym)+H(yn) − 1. (2)

If I(ym;yo) → 0 and I(yn;yo) → 0, we obtain

lim
I(ym;yo)→0

Wm,oI(Zm;Zo) + lim
I(yn;yo)→0

Wn,oI(Zn;Zo)

= lim
Wm,o→0

Wm,o · I(Zm;Zo) + lim
Wn,o→0

Wn,o · I(Zn;Zo) = 0.
(3)

Then, if I(ym;yn) = δ, δ ∈ R+, Eq. (1) becomes(
e

2·δ
H(ym)+H(yn) − 1

)
· I(Zm;Zn). (4)

For H(ym) + H(yn), it has a maximum value 2 logN if ym and yn follow the uniform
distribution, i.e., H(ym) + H(yn) = −

∑N
i=1 p(y

m
i ) log p(ymi ) −

∑N
i=1 p(y

n
i ) log p(y

n
i ) =

−
∑N

i=1 p(y
m
i ) log 1

|ym| −
∑N

i=1 p(y
n
i ) log

1
|yn| = 2 logN . Therefore, we have(

e
2·δ

H(ym)+H(yn) − 1
)
· I(Zm;Zn) ≥

(
eδ/logN − 1

)
· I(Zm;Zn), (5)

which completes the proof.
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Theorem 2. For any two views (v ∈ {m,n}) with positive class mutual information, denoting
Lv as the total layer number of the v-th view’s encoder network before representation Zv, the l-th
layer has the information losing rate γv

l ≥ 0. If S is an oracle variable that contains and only
contains multiple views’ discriminative semantic information, and Hv is the tv-th layer’s features, we
have minimizing the regularized loss Wm,nLm,n

InfoNCE(Z
m,Zn) + λ

∑
v Rv(Xv,Hv) is expected

to obtain I(S;Zm;Zn) ≤ min{I(S;Xm) ·
∏Lm

l=tm+1(1− γm
l ), I(S;Xn) ·

∏Ln

l=tn+1(1− γn
l )}.

Proof. We denote the hidden layers’ features in encoders as Hv
(1),H

v
(2), . . . ,H

v
(l), . . . ,H

v
(Lv). Based

on data processing inequality, we have

I(S;Xv) ≥ I(S;Hv
(1)) ≥ I(S;Hv

(2)) ≥ . . . I(S;Hv
(l)) ≥ . . . I(S;Hv

(Lv)) ≥ I(S;Zv). (6)

Considering information losing, we have

I(S;Zv) ≤ I(S;Xv) ·
Lv∏
l=1

(1− γv
l ). (7)

According to Proposition 1 and Proposition 2, minimizing the regularized loss approximately becomes
maximizing the following objective:

Wm,nI(Zm;Zn) + λ
∑

v=m,n

I(Xv;Hv), (8)

where Wm,n > 0 as two views (v ∈ {m,n}) are with positive class mutual information. The
reconstruction regularization I(Xv;Hv) makes I(S;Xv) = I(S;Hv). Therefore, if Hv is the tv-th
layer’s features (i.e., Hv

(tv) act as the regularized hidden features), we have

I(S;Zv) ≤ I(S;Xv) ·
Lv∏

l=tv+1

(1− γv
l ). (9)

The contrastive loss leads to max I(Zm;Zn) which essentially explores the discriminative semantic
information in S. Given I(S;Zm;Zn) ≤ min{I(S;Zm), I(S;Zn)}, as a result, we can obtain the
mutual information across S, Zm, and Zn as follows:

I(S;Zm;Zn) ≤ min{I(S;Xm) ·
Lm∏

l=tm+1

(1− γm
l ), I(S;Xn) ·

Ln∏
l=tn+1

(1− γn
l )}. (10)

In SEM, we have Zv = gv(Hv; Φv) where Hv and Zv are two different variables. This design aims
at separately maintaining different views’ discriminative information by {Hv}Vv=1 and exploring
their common semantic information by {Zv}Vv=1. Contrastive learning on {Zv}Vv=1 will capture the
common semantics across multiple views induced by the contrastive loss, and discard other useless
information in {Hv}Vv=1. In extreme cases, if we consider gv as a smooth invertible transformation
and we have the following theorem:
Theorem 3. For any two views (v ∈ {m,n}) with positive class mutual information I(ym;yn) = δ,
δ > 0, if gv learned by contrastive learning is a smooth invertible transformation, minimizing
the regularized loss Wm,nLm,n

InfoNCE(Z
m,Zn) + λ

∑
v=m,n Rv(Xv,Hv) will lead to a trade-off

between max I(Xm;Xn;Hm;Hn) and max I(Xm;Hm) + I(Xn;Hn).

Proof. According to Proposition 1 and Proposition 2, minimizing the regularized loss approximately
becomes maximizing the following objective:

(eδ/ logN − 1)I(Zm;Zn) + λI(Xm;Hm) + λI(Xn;Hn). (11)

If transformations gm and gn are smooth and invertible, the Jacobian determinant is JZm = | ∂Z
m

∂Hm |
and JZn = | ∂Z

n

∂Hn |, respectively. For the m-th and n-th views, we have

p(hm,hn) = p(zm, zn)JZm(hm)JZn(hn),

p(hm) = p(zm)JZm(hm), dzm = JZm(zm)dhm,

p(hn) = p(zn)JZn(hn), dzn = JZn(zn)dhn.

(12)
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Then, we can obtain the invariance property of mutual information between I(Zm;Zn) and
I(Hm;Hn) as follows:

I(Zm;Zn) =

∫ ∫
p(zm, zn) log

(
p(zm, zn)

p(zm)p(zn)

)
dzmdzn

=

∫ ∫
p(hm,hn)

JZm(hm)JZn(hn)
log

 p(hm,hn)
JZm (hm)JZn (hn)

p(hm)p(hn)
JZm (hm)JZn (hn)

 JZm(zm)dhmJZn(zn)dhn

=

∫ ∫
p(hm,hn) log

(
p(hm,hn)

p(hm)p(hn)

)
dhmdhn

= I(Hm;Hn).
(13)

As a result, the optimization objective in Eq. (11) becomes

(eδ/ logN − 1)I(Hm;Hn) + λI(Xm;Hm) + λI(Xn;Hn). (14)
The mutual information I(Xm;Xn) in data Xm and Xn is fixed, and the mutual information
I(Hm;Hn) changes due to variables Hm and Hn. Maximizing I(Hm;Hn) makes variables to
access I(Xm;Xn), while maximizing I(Xm;Hm) + I(Xn;Hn) tends to maintain all information
of view-specific data in variables. Since I(Xm;Hm) ̸= I(Xm;Xn;Hm;Hn), there is a trade-off
controlled by λ, i.e., maximizing to access the mutual information I(Xm;Xn) between two view’s
data, or maximizing I(Xm;Hm) + I(Xn;Hn) between variables and view-specific data.

Typically, gv will not be a smooth invertible transformation such that Hv and Zv learn different infor-
mation of data Xv . As we all know, data Xv in different views usually contain useful discriminative
information for common semantics as well as semantic-irrelevant information. We introduce the
reconstruction regularization on Hv to avoid that Hv loses the useful discriminative information of
data (here, Hv also maintains some semantic-irrelevant information due to the information recon-
struction). Then, contrastive learning on Zv can make Zv access sufficient discriminative information
from Hv to further explore the common semantics of multiple views. However, if the reconstruction
regularization is punished on Zv, Zv will also retain the semantic-irrelevant information which
might disturb Zv to explore the common semantics of multiple views. Therefore, the reconstruction
objective of our SEM framework is built on Hv instead of Zv, for reducing the interference of
semantic-irrelevant information to the contrastive learning performed on Zv .
Proposition 1. Minimizing the weighted InfoNCE losses among multiple views’ representations∑

m,n Wm,nLm,n
InfoNCE(Z

m,Zn) is equivalent to maximizing their weighted mutual information∑
m,n Wm,nI(Zm;Zn).

Proof. In this part, we leverage d(zmi , zni ) to denote the cosine distance between zmi ∈ Zm and
zni ∈ Zn. Then, based on the inequality in Lemma 1, we have:

− 1

N

N∑
i=1

log
ed(z

m
i ,zn

i )/τ∑N
j=1 e

d(zm
i ,zn

j )/τ
≥ logN − I(Zm;Zn), (15)

We rewrite the positive and negative pairs in InfoNCE loss and can obtain the following inequality:

− 1

N

N∑
i=1

log
ed(z

m
i ,zni )/τ∑N

j=1

∑
v=m,n ed(z

m
i ,zvj )/τ

≥− 1

N

N∑
i=1

log
ed(z

m
i ,zni )/τ∑N

j=1 e
d(zmi ,znj )/τ

≥ logN − I(Zm;Zn).

(16)

Given the equations I(Zm;Zn) = I(Zn;Zm) and Wm,n = Wn,m, we further have∑
m,n

Wm,nLm,n
InfoNCE(Z

m,Zn) ≥
V∑

m=1

V∑
n=1

(logN −Wm,nI(Zm;Zn))

= V 2 logN − 2

V∑
m=1

V∑
n=m

Wm,nI(Zm;Zn).

(17)
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Therefore, min
∑

m,n Wm,nLm,n
InfoNCE(Z

m,Zn) is equivalent to max
∑

m,n Wm,nI(Zm;Zn), i.e.,
minimizing the weighted InfoNCE losses among multiple views’ representations is equivalent to
maximizing their weighted mutual information.

The success of contrastive learning is often (not absolutely) attributable to the estimation of mutual
information. The following Eq. (18) gives the relation between InfoNCE and mutual information,
which also has been discussed by other forms in [1, 2, 3, 4, 5]. In this paper, We rewrite a proof to
this inequality for the completeness of lemmas.

Lemma 1. Let m and n denote two views, assuming p(zmi , znj ) = p(zmi )p(znj ) when j ̸= i, we have
the following inequality that give the relation between InfoNCE and mutual information:

− 1

N

N∑
i=1

log
exp(d(zmi , zni )/τ)∑N
j=1 exp(d(z

m
i , znj )/τ)

≥ logN − I(Zm;Zn). (18)

Proof. If j ̸= i, p(znj |zmi ) =
p(zn

j ,z
m
i )

p(zm
i ) = p(znj ). Let Si =

∑N
j=1

p(zm
i ,zn

j )

p(zm
i )p(zn

j )
, therefore, we have

I(Zm;Zn) =
N∑
i=1

N∑
j=1

p(zmi , znj ) log
p(zmi , znj )

p(zmi )p(znj )

=

N∑
i=1

N∑
j=1

p(zmi , znj ) log

(
p(zmi , znj )

p(zmi )p(znj ) · Si
· Si

)

=

N∑
i=1

N∑
j=1

p(zmi , znj ) log

p(zm
i ,zn

j )

p(zm
i )p(zn

j )

Si
+

N∑
i=1

N∑
j=1

p(zmi , znj ) logSi

=

N∑
i=1

p(zmi , zni ) log

p(zm
i ,zn

i )
p(zm

i )p(zn
i )

Si
+

N∑
i=1

∑
j ̸=i

p(zmi , znj ) log

p(zm
i ,zn

j )

p(zm
i )p(zn

j )

Si

+

N∑
i=1

N∑
j=1

p(zmi , znj ) logSi.

=

N∑
i=1

p(zmi , zni ) log

p(zm
i ,zn

i )
p(zm

i )p(zn
i )

Si
+

N∑
i=1

∑
j ̸=i

p(zmi , znj ) log
p(zmi )p(znj )

p(zmi )p(znj )

+

N∑
i=1

N∑
j=1

p(zmi , znj ) logSi −
N∑
i=1

∑
j ̸=i

p(zmi , znj ) logSi

=

N∑
i=1

p(zmi , zni ) log

p(zm
i ,zn

i )
p(zm

i )p(zn
i )

Si
+

N∑
i=1

p(zmi , zni ) logSi.

(19)

Since positive pairs are correlated, we have the estimate: p(zmi , zni ) ≥ p(zmi )p(zni ). Therefore, the
following inequality holds:

logSi = log

 N∑
j=1

p(zmi , znj )

p(zmi )p(znj )


= log

 p(zmi , zni )

p(zmi )p(zni )
+
∑
j ̸=i

p(zmi , znj )

p(zmi )p(znj )


= log

(
N +

p(zmi , zni )

p(zmi )p(zni )
− 1

)
≥ logN.

(20)
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According to Lemma 2 and Eq. (20), we assume that there exists a constant δ ∈ (0, 1) such that
p(zmi |zni ) ≥ δ, i = 1, 2, · · · , N holds. With the estimation [1, 3], i.e., p(zni ) ≈ 1

N , i = 1, 2, · · · , N ,
the following inequality holds:

I(Zm;Zn) =

N∑
i=1

p(zmi , zni ) log

p(zm
i ,zn

i )
p(zm

i )p(zn
i )

Si
+

N∑
i=1

p(zmi , zni ) logSi

≈
N∑
i=1

1

N
p(zmi |zni ) log

p(zm
i ,zn

i )
p(zm

i )p(zn
i )

Si
+

N∑
i=1

1

N
p(zmi |zni ) logSi

≥ δ

(
1

N

N∑
i=1

log
exp(d(zmi , zni )/τ)∑N
j=1 exp(d(z

m
i , znj )/τ)

+ logN

)
.

(21)

Furthermore, we have

− 1

N

N∑
i=1

log
exp(d(zmi , zni )/τ)∑N
j=1 exp(d(z

m
i , znj )/τ)

≥ logN − 1

δ
I(Zm;Zn). (22)

Consequently, when the constant δ ≈ 1 (i.e., the positive pairs are approximate to be correlated),
Eq. (18) holds.

According to [1], Eq. (22) is more precise when N is larger. Minimizing the left part of Eq. (22) is
equivalent to maximizing the mutual information I(Zm;Zn). Note that this bound is weak as there
exists approximation about mutual information [6].
Lemma 2. The optimal value of exp(d(zmi , znj )/τ) is proportional to the ratio of p(zmi , znj ) to

p(zmi )p(znj ), i.e., exp(d(zmi , znj )/τ) ∝
p(zm

i ,zn
j )

p(zm
i )p(zn

j )
.

Proof. We consider the following formulation:

− 1

N

N∑
i=1

log
exp(d(zmi , zni )/τ)∑N
j=1 exp(d(z

m
i , znj )/τ)

. (23)

Eq. (23) can be regarded as a cross-entropy loss. As a result, minimizing this loss is equivalent to
solving a binary classification problem, namely, classifying the given pairs into positive or negative
pairs. We let {zmi , zni } denote the positive pairs and {zmi , znj }j ̸=i denote the negative pairs. For
each given pairs {zmi , znj }Ni,j=1, we let p(zni |{zn1 , · · · , znN}, zmi ) denote the predicted probability
of finding zni from {zn1 , · · · , znN} to form positive pairs {zmi , zni }. p(zmi , znj ), p(z

m
i ), and p(znj )

denote the joint probability and marginal probabilities of zmi and znj . Then, the optimal value of
p(zni |{zn1 , · · · , znN}, zmi ) is:

p(zni |{zn1 , · · · , znN}, zmi ) =
p(zni |zmi )

∏
l ̸=i p(z

n
l )∑N

j=1 p(z
n
j |zmi )

∏
l ̸=j p(z

n
l )

=

p(zn
i |z

m
i )

p(zn
i )∑N

j=1

p(zn
j |zm

i )

p(zn
j )

=

p(zm
i ,zn

i )
p(zm

i )p(zn
i )∑N

j=1

p(zm
i ,zn

j )

p(zm
i )p(zn

j )

.

(24)

The corresponding cross-entropy loss is:

L = − 1

N

N∑
i=1

log p(zni |{zn1 , · · · , znN}, zmi ) = − 1

N

N∑
i=1

log

p(zm
i ,zn

i )
p(zm

i )p(zn
i )∑N

j=1

p(zm
i ,zn

j )

p(zm
i )p(zn

j )

. (25)

Comparing Eq. (25) with Eq. (23), we can find exp(d(zmi , znj )/τ) ∝
p(zm

i ,zn
j )

p(zm
i )p(zn

j )
.
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Proposition 2. (max I(Xv;Hv) [7]) Combining with Monte Carlo sampling, minimizing the re-
construction loss between raw data and reconstructed data

∥∥Xv − fv
−(H

v)
∥∥2
F

is approximate to
maximizing the mutual information between raw data and their hidden features I(Xv;Hv).

Proof. For the v-th view, we let xv and hv denote the points in the space of raw data Xv and in
the space of hidden features Hv, respectively. According to the definition, the mutual information
between Xv and Hv can be formulated as

I(Xv;Hv) =

∫
hv

∫
xv

p(xv,hv) log

(
p(xv|hv)

p(xv)

)
dxvdhv. (26)

The decoder network achieves the approximation q(xv|hv) of the true posterior p(xv|hv). Based on
the non-negative property of Kullback-Leibler divergence (DKL), we have∫

xv

p(xv|hv) log

(
p(xv|hv)

q(xv|hv)

)
dxv = DKL[p(x

v|hv)||q(xv|hv)] ≥ 0

⇒
∫
xv

p(xv|hv) log (p(xv|hv)) dxv ≥
∫
xv

p(xv|hv) log (q(xv|hv)) dxv

⇒
∫
hv

p(hv)dhv

∫
xv

p(xv|hv) log (p(xv|hv)) dxv

≥
∫
hv

p(hv)dhv

∫
xv

p(xv|hv) log (q(xv|hv)) dxv

⇒
∫
hv

∫
xv

p(xv,hv) log (p(xv|hv)) dxvdhv

≥
∫
hv

∫
xv

p(xv,hv) log (q(xv|hv)) dxvdhv

⇒
∫
hv

∫
xv

p(xv,hv) log

(
p(xv|hv)

p(xv)

)
dxvdhv

≥
∫
hv

∫
xv

p(xv,hv) log

(
q(xv|hv)

p(xv)

)
dxvdhv

⇒I(Xv;Hv) ≥
∫
hv

∫
xv

p(xv,hv) log

(
q(xv|hv)

p(xv)

)
dxvdhv.

(27)

Considering −
∫
hv

∫
xv p(x

v,hv) log (p(xv)) dxvdhv ≥ 0, we further have

I(Xv;Hv) ≥
∫
hv

∫
xv

p(xv,hv) log (q(xv|hv)) dxvdhv

−
∫
hv

∫
xv

p(xv,hv) log (p(xv)) dxvdhv

⇒ I(Xv;Hv) ≥
∫
hv

∫
xv

p(xv,hv) log (q(xv|hv)) dxvdhv

⇒ I(Xv;Hv) ≥
∫
xv

p(xv)dxv

∫
hv

p(hv|xv) log (q(xv|hv)) dhv.

(28)

Based on Monte Carlo sampling method [8, 7] on xv
i ∈ Xv , we obtain∫

xv

p(xv)dxv

∫
hv

p(hv|xv) log (q(xv|hv)) dhv

=
1

N

N∑
i=1

∫
hv

p(hv|xv
i ) log (q(x

v
i |hv)) dhv

=
1

N

N∑
i=1

Ep(hv|xv
i )
[log (q(xv

i |hv))],

(29)
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where p(hv|xv
i ) and q(xv

i |hv) could be treated as the encoder fv and decoder fv
− processes of xv

i ,
respectively. There is no harm in supposing that q(.) follows Gaussion distribution [7]. Then, the
approximate posterior q(xv

i |hv) can be formulated as

q(xv
i |hv) =

1√
2πσ

exp

(
−
∥∥xv

i − fv
−(h

v)
∥∥2
2

σ2

)
. (30)

As a result, we have the following inequality:

I(Xv;Hv) ≥ 1

N

N∑
i=1

Ep(hv|xv
i )

[
− log

(√
2πσ

)
−
∥∥xv

i − fv
−(h

v)
∥∥2
2

σ2

]
. (31)

Therefore, minimizing 1
N

∑N
i=1 Ep(hv|xv

i )

[∥∥xv
i − fv

−(h
v)
∥∥2
2

]
is approximate to maximizing

I(Xv;Hv). If we continue to simplify hv
i ∈ Hv with Monte Carlo sampling method, we fur-

ther have

1

N

N∑
i=1

Ep(hv|xv
i )

[∥∥xv
i − fv

−(h
v)
∥∥2
2

]
=

1

N

N∑
i=1

1

M

M∑
j=1

[∥∥∥xv
i − fv

−(h
v
i(j))

∥∥∥2
2

]
. (32)

Since hv
i can be the only one output of xv

i by decoder network [7] (i.e., M = 1), we could obtain that
minimizing the reconstruction loss

∥∥Xv − fv
−(H

v)
∥∥2
F

is approximate to maximizing I(Xv;Hv).

Complexity analysis Letting N,n,E represent the data size, batch size, and total training epochs,
respectively, the computation of loss functions and the update of model parameters are with mini-
batch manner. Their time complexity is determined by the batch size n and the total training epochs
E. Since n ≪ N holds, the complexity would be O(E). Letting V represent the number of views,
hv and z denote the dimensionality of Hv and Zv of the v-th view, respectively. Step size S denotes
the number of training epochs after each update of weights. In terms of weighting strategy WMMD,
for reducing the complexity of MMD, we can leverage partial instead of whole samples to update
{Wm,n}Vm,n=1. For example, we can randomly pick up n̂ samples (n̂ ≪ N ) to compute MMD and
the complexity is just O(n̂2). For weighting strategy WCMI , the computation of {Wm,n}Vm,n=1
needs V ×N representations from all views to obtain K-Means clustering results and its total time
complexity is O(hvV N) +O(zV NE/S), which is linear to N . When N is too large, we can apply
mini-batch K-Means to reduce the complexity of CMI weighting strategy.

Appendix B Experimental Settings

Table 1: Description for abbreviation
Abbr. Description
InfoNCE Info noise contrastive estimation
SIFT Scale-invariant feature transform
STIP Space-time interest points
MFCC Mel-frequency cepstral coefficents
CENTRIST Census transform histogram
HOG Histogram of oriented gradient
LBP Local binary pattern

The models of all methods are implemented with PyTorch [9] platform and tested on the same
device with a NVIDIA GeForce RTX 3090 GPU (24.0GB caches) and a 11th Gen Intel(R) Core(TM)
i5-11600KF @ 3.90GHz CPU (64.0GB RAM). For fair comparison, all methods adopt the similar
architecture of neural networks following previous work [10, 11]. For our SEM, the encoder
network can be denoted as Xv → 500 → 500 → 2000 → Hv → Zv and the decoder is reversed
Hv → 2000 → 500 → 500 → X̂v. In this architecture, the penultimate layer of encoder networks
is recorded as the hidden features Hv. For all views, the dimension of hidden features Hv and
contrastive representations Zv are set to 512 and 128, respectively. Activation function is ReLU [12]
and optimizer adopts Adam [13]. For all used datasets, the learning rate is fixed to 0.0003 and the
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hyper-parameter λ is fixed to 1. Table 2 shows the network training details on different datasets. In
our experiments, as computing MMD has high complexity, we select first 2000 samples for avoiding
out-of-memory when data size is large. The noise of denoising autoencoder is random Gaussian
noise. The mask rate of masked autoencoder is set to 30%. For the CMI weighting strategy, the
cluster number of K-Means algorithm is pre-defined to the truth class number of a dataset. For the
MMD weighting strategy, the bandwith and number of kernels are set to 4 for all datasets used in this
paper. Since our work does not focus on specific contrastive losses, we adopt the fixed parameter
settings of InfoNCE/PSCL/RINCE as shown in Table 3 for all experiments. Moreover, the batch size
that will affect the number of negative pairs is also fixed to 256.

Table 2: Network training details on different datasets
Pre-training Epoch CL Epoch Input dimensions of different views dimension of Hv dimension of Zv

DHA 100 300 110/6144 512 128
CCV 100 200 5000/5000/4000 512 128
NUSWIDE 100 100 64/225/144/73/128 512 128
Caltech 100 400 48/40/254/1984/512/928 512 128
YoutubeVideo 100 25 512/647/838 512 128

Table 3: Parameter setting in contrastive losses
Parameters

InfoNCE τ = 1.0
PSCL r = 3.0
RINCE τ = 0.5, α = 0.001, q = 0.5

Appendix C Additional Experiments

Figure 1 and 2 show the linear classification performance on NUSWIDE and Caltech datasets. We do
not report the results on YoutubeVideo as this large-scale dataset is beyond the usable range of SVM.

Figure 1: Classification performance on NUSWIDE.

Figure 2: Classification performance on Caltech.

Table 4 reports the time consumption of SEM with three options of weight strategy on five datasets,
where the contrastive loss and reconstruction term are fixed to LInfoNCE and RAE . On CCV,
NUSWIDE, and YoutubeVideo, as MMD has high complexity, we select first 2,000 samples to
compute weights for avoiding out-of-memory. In this setting, we observe that SEM w/ WJSD is the
fastest variant among the three variants as the computation of JSD is the simplest. Generally, SEM w/
WCMI is faster than SEM w/ WMMD even if the MMD is computed on partial data.

Table 5 reports the results of ablation experiments on SEM with different options of weight strategy
on five datasets. Table 6 reports the results of ablation experiments on SEM with different options of
reconstruction term on five datasets, where RAE/DAE/MAE w/o SEM denote the performance on
representations learned by AE/DAE/MAE models without SEM framework. We can observe that
SEM w/ RAE/DAE/MAE achieve significant improvements over RAE/DAE/MAE w/o SEM.
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Table 4: Time consumption (seconds) of SEM with different options of weight strategy
Variants DHA CCV NUSWIDE Caltech YoutubeVideo
SEM w/ WCMI 38 984 783 533 1990
SEM w/ WJSD 25 556 389 396 1938
SEM w/ WMMD 28 833 1144 775 2248

Table 5: Clustering performance on SEM with different options of W
DHA CCV NUSWIDE Caltech YoutubeVideo

Variants ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
SEM w/o W 71.29 79.77 33.50 33.01 61.90 33.82 77.71 68.68 20.96 20.82
SEM w/ WCMI 80.87 84.10 39.35 35.50 60.37 34.92 87.17 80.33 31.25 31.12
SEM w/ WJSD 80.53 83.75 35.59 33.45 62.96 34.61 85.50 77.16 21.76 21.49
SEM w/ WMMD 84.40 86.22 33.89 34.13 61.39 32.75 85.67 77.36 27.50 28.47

Table 6: Clustering performance on SEM with different options of R
DHA CCV NUSWIDE Caltech YoutubeVideo

Variants ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
RAE w/o SEM 69.15 78.43 14.29 11.39 38.70 13.60 86.00 76.43 20.03 19.55
RDAE w/o SEM 70.39 78.87 12.67 9.58 39.54 15.08 86.43 77.47 21.73 21.49
RMAE w/o SEM 69.98 77.10 14.62 11.66 35.84 14.54 86.21 77.08 22.78 21.95
SEM w/o R 60.45 74.11 28.72 26.53 57.74 26.62 79.42 69.78 32.69 32.57
SEM w/ RAE 80.87 84.10 39.35 35.50 60.37 34.92 87.17 80.33 31.25 31.12
SEM w/ RDAE 81.50 83.49 38.42 33.62 59.54 33.62 86.57 79.12 38.78 36.70
SEM w/ RMAE 83.02 84.44 39.48 35.79 60.94 36.24 86.71 78.03 33.26 33.04

Table 7 reports the experiments on SEM with different sum manner of contrastive losses (where the
combination of LInfoNCE+WCMI+RAE is taken). We observe that

∑V
m

∑V
n=m+1 L

m,n
CL performs

worse than
∑V

m

∑V
n Lm,n

CL . This might be because the latter (i.e.,
∑

m,n L
m,n
CL in the paper) pairs

negative samples for both zmi and zni (e.g., {zmi , zvj}
v=m,n
j ̸=i and {zni , zvj}

v=n,m
j ̸=i ), which can access

more comprehensive negative sample pairs for contrastive learning than the former.

Table 7: Clustering performance on SEM with different sum manner of contrastive losses
DHA CCV NUSWIDE Caltech YoutubeVideo

Variants ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI∑V
m

∑V
n=m+1 L

m,n
CL 72.04 78.38 27.95 29.92 58.28 29.74 86.54 78.35 21.47 21.82∑V

m

∑V
n Lm,n

CL 80.87 84.10 39.35 35.50 60.37 34.92 87.17 80.33 31.25 31.12

(a) (b)

Figure 3: (a) ACC vs. λ. (b) NMI vs. λ.

Parameter analysis Since different datasets have different levels of reconstruction errors, the trade-
off coefficient λ is introduced to balance contrastive learning and information recovery in our SEM
framework. In Figure 3, we change λ within the range of [10−3, 10−2, 10−1, 100, 101, 102, 103]
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and report the clustering accuracy on the learned representations. The results indicate that SEM
framework is not sensitive to λ in [10−1, 101]. For all our experiments, λ is consistently set to 1.
Additionally, we investigate the effect of cluster number when the weight strategy of SEM framework
is selected as WCMI that needs to pre-define the cluster number when applying K-Means. When
computing the class mutual information, as shown in Figure 4, we change the number of clusters
within the range of [K/2,K, 2K, 4K] where K denotes the truth class number of datasets. The
results demonstrate that SEM with WCMI is not sensitive to the choices of cluster number.

(a) (b)

Figure 4: (a) ACC vs. K. (b) ACC vs. K.

(a) (b)

Figure 5: (a) ACC vs. Iterative times of updating weights. (b) NMI vs. Iterative times of updating weights.

In experiments, the times of updating weights during whole training is E/S, where E is total training
epochs and S is the step size (the number of training epochs after each update of weights). In Figure 5,
we fix S after each update of weights and record the clustering accuracy on the learned representations
during the iterative times of updating weights in SEM framework (here, an iteration means the one
time of updating weights). We observe that only one time of updating weights is enough for some
datasets. Usually, the effect of multi-view contrastive learning is gradually improved with the increase
of the times of updating weights for some datasets. In our experiments, we fix the times of updating
weights on DHA/YoutubeVideo to 1, and fix those on CCV/NUSWIDE/Caltech to 4.

Appendix D Social Impacts and Limitations

In multi-view contrastive learning, it might be promising to take the representation degeneration into
account, especially in unsupervised environments where the qualities of different views captured by
various sensors cannot be guaranteed, e.g., the views from some sensors in real-world application
scenarios (such as in animal protection and automatic pilot) are faulty or not applicable, and thus
bring semantic-irrelevant information. Additionally, our work proposed a machine learning algorithm
to make contrastive learning more practical in the field of multi-view learning. This research is not
expected to introduce new negative societal impacts beyond what is already known. Conceptually,
the limitation of the self-weighting strategy is that it is more effective when there are over two views.
When there are only two views, the self-weighted contrastive learning transforms into traditional
contrastive learning but with reconstruction regularization. Therefore, one of our future work is to
extend the view-level weighting of our proposed framework to sample-level weighting.
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