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Abstract

Uncoupled regression is the problem to learn a model from unlabeled data and the
set of target values while the correspondence between them is unknown. Such a
situation arises in predicting anonymized targets that involve sensitive information,
e.g., one’s annual income. Since existing methods for uncoupled regression often
require strong assumptions on the true target function, and thus, their range of
applications is limited, we introduce a novel framework that does not require such
assumptions in this paper. Our key idea is to utilize pairwise comparison data,
which consists of pairs of unlabeled data that we know which one has a larger target
value. Such pairwise comparison data is easy to collect, as typically discussed
in the learning-to-rank scenario, and does not break the anonymity of data. We
propose two practical methods for uncoupled regression from pairwise comparison
data and show that the learned regression model converges to the optimal model
with the optimal parametric convergence rate when the target variable distributes
uniformly. Moreover, we empirically show that for linear models the proposed
methods are comparable to ordinary supervised regression with labeled data.

1 Introduction

In supervised regression, we need a vast amount of labeled data in the training phase, which is costly
and laborious to collect in many real-world applications. To deal with this problem, weakly-supervised
regression has been proposed in various settings, such as semi-supervised learning (see Kostopoulos
et al. [17] for the survey), multiple instance regression [27, 34], and transductive regression [4, 5].
See [35] for a thorough review of the weakly-supervised learning in binary classification, which can
be extended to regression with slight modifications.

Uncoupled regression [2] is one variant of weakly-supervised learning. In ordinary “coupled”
regression, the pairs of features and targets are provided, and we aim to learn a model that minimizes
a certain prediction error on test data. On the other hand, in the uncoupled regression problem, we
only have access to unlabeled data and the set of target values, and thus, we do not know the true target
for each data point. Such a situation often arises when we aim to predict people’s sensitive matters
such as one’s annual salary or the total amount of deposit, the data of which is often anonymized for
privacy concerns. Note that it may not be impossible to conduct uncoupled regression without further
assumptions, since no labeled data is provided.

Carpentier and Schlueter [2] showed that uncoupled regression is solvable when the feature is
one-dimensional and the true target function is monotonic to it. Although their algorithm is of less
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practical use due to its strong assumption, their work offers a valuable insight that a model is learnable
from uncoupled data if we know the ranking in the dataset. In this paper, we show that, instead
of imposing the monotonic assumption, we can infer such ranking information from data to solve
uncoupled regression. We use pairwise comparison data as a source of ranking information, which
consists of the pairs of unlabeled data that we know which data point has a larger target value.

Note that pairwise comparison data is easy to collect even for sensitive matters such as one’s annual
earnings. Although people often hesitate to give explicit answers to it, it might be easier to answer
indirect questions: “Which person earns more than you?” 2, which yields pairwise comparison data
that we need. The difficulty here is that comparison is based on the target value, which contains the
noise. Hence, the comparison data is also affected by this noise. Considering that we do not put any
assumption on the true target function, our methods are applicable to many situations. A similar
problem was considered in Bao et al. [1] as well.

One naive method for uncoupled regression with pairwise comparison data is to use a score-based
ranking method [29], which learns a score function with the minimum inversions in pairwise com-
parison data. With such a score function, we can match unlabeled data and the set of target values,
and then, conduct supervised learning. However, as discussed in Rigollet and Weed [28], we cannot
consistently recover the true target function even if we know the true order of missing target values in
unlabeled data due to the noise in them.

In contrast, our methods directly minimize the regression risk. We first rewrite the regression risk so
that it can be estimated from unlabeled and pairwise comparison data, and learn a model through
empirical risk minimization. Such an approach based on risk rewriting has been extensively studied
in the classification scenario [7, 6, 23, 30, 18] and exhibits promising performance. We propose two
estimators of the risk defined based on the expected Bregman divergence [11], which is a natural
choice of the risk function. We show that if the marginal distribution of the target variable is uniform
then the estimators are unbiased and the learned model converges to the optimal model with the
optimal rate. In general cases, however, we prove that it is impossible to have such an unbiased
estimator in any marginal distributions and the learned model may not converge to the optimal one.
Still, our empirical evaluations based on synthetic data and benchmark datasets show that our methods
exhibit similar performance to a model learned from coupled data for ordinary supervised regression.

The paper is structured as follows. After discussing the related work in Section 2, we formulate the
uncoupled regression problem with pairwise comparison data in detail in Section 3. In Sections 4
and 5, we discuss two methods for uncoupled regression and derive estimation error bounds for each
method. Finally, we show empirical results in Section 6 and conclude the paper in Section 7.

2 Related work

Several methods have been proposed to match two independently collected data sources. In the
context of data integration [3], the matching is conducted based on some contextual data provided for
both data sources. For example, Walter and Fritsch [31] used spatial information as contextual data
to integrate two data sources. Some work evaluated the quality of matching by some information
criterion and found the best matching by maximizing the metric. This problem is called cross-domain
object matching (CDOM), which was formulated in Jebara [15]. A number of methods have been
proposed for CDOM, such as Quadrianto et al. [26], Yamada and Sugiyama [33], and Jitta and Klami
[16].

Another line of related work in the uncoupled regression problem imposed an assumption on the true
target function. For example, Carpentier and Schlueter [2] assumed that the true target function is
monotonic to a single feature, and it was refined theoretically by Rigollet and Weed [28]. Another
common assumption is that the true target function is exactly expressed as a linear function of the
features, which was studied in Hsu et al. [14] and Pananjady et al. [24]. Although the model learned
from these methods converges to the true target function with infinite uncoupled data, they are of
less practical use due to their strong assumptions. On the other hand, our methods do not require any
assumptions on such mapping functions and are applicable to wider scenarios.

2This questioning can be regarded as one type of randomized response (indirect questioning) techniques [32],
which is a survey method to avoid social desirability bias.
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It is worth noting that some methods use uncoupled data to enhance the performance of semi-
supervised learning. For example, in label regularization [19], uncoupled data is used to regularize
a regression model so that the distribution of prediction on unlabeled data is close to the marginal
distribution of target variables, which was reported to increase the accuracy.

Pairwise comparison data was originally considered in the ranking problem [29, 22], which aims to
learn a score function that can rank data correctly. In fact, we can apply ranking methods, such as
rankSVM [13], to our problem. However, the naive application of them performs inferiorly compared
to proposed methods, as we will show empirically, since our goal is not to order data correctly but to
predict true target values.

3 Problem settings

In this section, we formulate the uncoupled regression problem and introduce pairwise comparison
data.

3.1 Uncoupled regression problem

We first formulate the standard regression problem briefly. Let X ⊂ Rd be a d-dimensional feature
space and Y ⊂ R be a target space. We denoteX, Y as random variables on spacesX ,Y , respectively.
We assume these random variables follow the joint distribution PX,Y . The goal of the regression
problem is to obtain model h : X → Y in hypothesis spaceH which minimizes the risk defined as

R(h) = EX,Y [l(h(X), Y )] , (1)

where EX,Y denotes the expectation over PX,Y and l : Y × Y → R+ is a loss function.

The loss function l(z, t) measures the closeness between a true target t ∈ Y and an output of a model
z ∈ Y , which generally grows as prediction z gets far from the target t. In this paper, we mainly
consider l(z, t) to be the Bregman divergence dφ(t, z), which is defined as

dφ(t, z) = φ(t)− φ(z)− (t− z)φ′(z)
for some convex function φ : R→ R, and φ′ denotes the derivative of φ. It is natural to have such a
loss function since the minimizer of risk R is EY |X=x [Y ] when hypothesis spaceH is rich enough
[11], where EY |X=x is the conditional expectation over the distribution of Y givenX = x. Many
common loss functions can be interpreted as the Bregman divergence; for instance, when φ(x) = x2,
then dφ(t, z) becomes the l2-loss, and when φ(x) = x log x− (1− x) log(1− x), then dφ(t, z) is
the Kullback–Leibler divergence between the Bernoulli distributions with probabilities t and z.

In the standard regression scenario, we are given labeled training data D = {(xi, yi)}ni=1 drawn
independently and identically from PX,Y . Then, based on the training data, we empirically estimate
risk R(h) and obtain model ĥ by the minimizing the empirical risk. On the other hand, in uncoulped
regression, what we are given are unlabeled data DU = {xi}nU

i=1 and target values DY = {yi}nY
i=1

without correspondance. Here, nU is the size of unlabeled data. Furthermore, we denote the marginal
distribution of featureX as PX and its probability density function as fX . Similarly, PY stands for
the marginal distribution of target Y , and fY is the density function of PY . We use EX,Y ,EX and
EY to denote the expectations over PX,Y , PX , and PY , respectively.

Unlike Carpentier and Schlueter [2], we do not try to match unlabeled data and target values. In fact,
our methods do not use each target value in DY but use density function fY of the target, which can
be estimated from DY . For simplicity, we assume that the true density function fY is known. The
case where we need to estimate fY from DY is discussed in Appendix B.

3.2 Pairwise comparison data

Here, we introduce pairwise comparison data. It consists of two random variables (X+,X−), where
the target value ofX+ is larger than that ofX−. Formally, (X+,X−) are defined as

X+ =

{
X (Y ≥ Y ′),
X ′ (Y < Y ′),

X− =

{
X ′ (Y ≥ Y ′),
X (Y < Y ′),

(2)
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where (X, Y ), (X ′, Y ′) are two independent pairs of random variables following PX,Y . We denote
the joint distribution of (X+,X−) as PX+,X− and the marginal distributions as PX+ , PX− . Density
functions fX+,X− , fX+ , fX− and expectations EX+,X− ,EX+ ,EX− are defined in the same way.

We assume that we have access to nR pairs of i.i.d. samples of (X+,X−) as DR = {(x+
i ,x

−
i )}nR

i=1
in addition to unlabeled data DU and density function fY of target variable Y . In the following
sections, we show that uncoupled regression can be solved only from this information. In fact, our
methods only require samples of either one of X+,X−, which corresponds to the case where only a
winner or loser of the ranking is observable.

One naive approach to conducting uncouple regression with DR would be to adopt ranking method,
which is to learn a ranker r : X → R that minimizes the following expected ranking loss:

RR(r) = EX+,X−
[
1
[
r(X+)− r(X−) < 0

]]
, (3)

where 1 is the indicator function. By minimizing the empirical estimation of (3) based on DR, we
can learn a ranker r̂ that can sort data points by target Y . Then, we can predict quantiles of test data
by ranking DU, which leads to the prediction by applying the inverse of the cumulative distribution
function (CDF) of Y . Formally, if the test point xtest is ranked top n′-th in DU, we can predict the
target value for xtest as

ĥ(xtest) = F−1Y

(
nU − n′
nU

)
, (4)

where FY (t) = P (Y ≤ t) is the CDF of Y .

This approach, however, is known to be highly sensitive to the randomness in the target variable as
discussed in Rigollet and Weed [28]. This is because a noise involved in the single data point changes
the ranking of all other data points and affects their predictions. As illustrated in Rigollet and Weed
[28], even if when we have a perfect ranker, i.e., we know the true order in DU, model (4) is still
different from the expected target Y given featureX in presence of noise.

4 Empirical risk minimization by risk approximation

In this section, we propose a method to learn a model from pairwise comparison data DR, unlabeled
data DU, and density function fY of target variable Y . The method follows the empirical risk
minimization principle, while the risk is approximated so that it can be empirically estimated from
available data. Therefore, we call this method the risk approximation (RA) method. Here, we present
an approximated risk and derive its estimation error bound.

From the definition of the Bregman divergence, the risk function in (1) is expressed as

R(h) = EY [φ(Y )]− EX [φ(h(X))− h(X)φ′(h(X))]− EX,Y [Y φ′(h(X))] . (5)

In this decomposition, the last term is the only problematic part in uncoupled regression since it
requires to calculate the expectation on the joint distribution. Here, we consider approximating the
last term based on the following expectations over the distributions ofX+,X−.

Lemma 1. We have

EX+

[
φ′(h(X+))

]
= 2EX,Y [FY (Y )φ′(h(X))] ,

EX−
[
φ′(h(X−))

]
= 2EX,Y [(1− FY (Y ))φ′(h(X))] .

The proof can be found in Appendix C.1. From Lemma 1, we can see that EX,Y [Y φ′(h(X))] =
(EX+ [φ′(h(X+))])/2 if FY (y) = y, which corresponds to the case where target variable Y
marginally distributes uniformly in [0, 1]. This leads us to consider the approximation in the form of

EX,Y [Y φ′(h(X))] ' w1EX+

[
φ′(h(X+))

]
+ w2EX−

[
φ′(h(X−))

]
(6)

for some constants w1, w2 ∈ R. Note that the above uniform case corresponds to (w1, w2) =
(1/2, 0). In general, if target Y marginally distributes uniformly on [a, b] for b > a, that is, FY (y) =
(y − a)/(b− a) for all y ∈ [a, b], we can see that approximation (6) becomes exact for (w1, w2) =
(b/2, a/2) from Lemma 1. In such a case, we can construct an unbiased estimator of true risk R from

4



unlabeled and pairwise comparison data. For non-uniform target marginal distributions, we choose
(w1, w2) that minimizes the upper bound of the estimation error, which we will discuss in detail later.

Since we have EX [φ′(X)] = 1
2EX+ [φ′(X+)] + 1

2EX− [φ′(X−)] from Lemma 1, (6) can be
rewritten as

EX,Y [Y φ′(h(X))]

' λEX [φ′(X)] +

(
w1 −

λ

2

)
EX+

[
φ′(h(X+))

]
+

(
w2 −

λ

2

)
EX−

[
φ′(h(X−))

]
(7)

for arbitrary λ ∈ R. Hence, by approximating (5) by (7), we can write the approximated risk RRA as
RRA(h;λ,w1, w2) = C− EX [φ(h(X))− (h(X)− λ)φ′(h(X))]

−
(
w1 −

λ

2

)
EX+

[
φ′(h(X+))

]
−
(
w2 −

λ

2

)
EX−

[
φ′(h(X−))

]
.

Here, C = EY [φ(Y )] can be ignored in the optimization procedure. Now, the empirical estimator of
RRA is

R̂RA(h;λ,w1, w2) = C− 1

nU

∑
xi∈DU

(φ(h(xi))− (h(xi)− λ)φ′(h(xi)))

− 1

nR

∑
(x+

i ,x
−
i )∈DR

((
w1 −

λ

2

)
φ′(h(x+

i )) +

(
w2 −

λ

2

)
φ′(h(x−i ))

)
,

which is to be minimized in the RA method. Again, we would like to emphasize that if marginal
distribution PY is uniform on [a, b] and (w1, w2) is set to (b/2, a/2), we have RRA = R and R̂RA is
an unbiased estimator of R for any λ ∈ R.

From the definition of R̂RA, we can see that by setting λ to either 2w1 or 2w2, R̂RA becomes
independent of eitherX+ orX−. This means that we can conduct uncouple regression even if one
ofX+,X− is missing in data, which corresponds to the case where only winners or only losers of
the comparison are observed.

Another advantage of tuning free parameter λ is that we can reduce the variance in empirical risk
R̂RA as discussed in Sakai et al. [30] and Bao et al. [1]. As in Sakai et al. [30], the optimal λ that
minimizes the variance in R̂RA for nU →∞ is derived as follows.
Theorem 1. For a given model h, let σ2

+, σ
2
− be

σ2
+ = VarX+

[
φ′(h(X+))

]
, σ2

− = VarX−
[
φ′(h(X−))

]
,

respectively, where VarX [·] is the variance with respect to the random variableX . Then, setting

λ =
2(w1σ

2
+ + w2σ

2
−)

σ2
+ + σ2

−

yields the estimator with the minimum variance among estimators in the form of R̂RA when nU →∞.

The proof can be found in Appendix C.3. From Theorem 1, we can see that the optimal λ does not
equal zero, which means that we can reduce the variance in the empirical estimation with a sufficient
number of unlabeled data by tuning λ. Note that this situation is natural since unlabeled data is easier
to collect than pairwise comparison data as discussed in Duh and Kirchhoff [9].

Now, from the discussion of the pseudo-dimension [12], we establish an upper bound of the following
estimation error, which is used to choose weights (w1, w2). Let ĥRA and h∗ be the minimizers of
R̂RA and R in hypothesis classH, respectively. Then, we have the following theorem that bounds
the excess risk in terms of parameters (w1, w2).
Theorem 2. Suppose that the pseudo-dimensions of {x → φ′(h(x)) | h ∈ H}, {x →
h(x)φ′(h(x)) − φ(h(x)) | h ∈ H} are finite and there exist constants m,M such that
|h(x)φ′(h(x))− φ(h(x))| ≤ m, |φ′(h(x))| ≤M for all x ∈ X and all h ∈ H. Then,

R(ĥRA) ≤ R(h∗) +O

√ log 1/δ

nU

+O

√ log 1/δ

nR

+MErr(w1, w2)
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holds with probability 1− δ, where Err is defined as

Err(w1, w2) = EY [|Y − 2w1FY (Y )− 2w2(1− FY (Y ))|] . (8)

The proof can be found in Appendix C.2. Note that the conditions for the boundedness of
|h(x)φ′(h(x)) − φ(h(x))|, |φ′(h(x))| hold for many losses, e.g., the l2-loss, when we consider
a hypothesis space of bounded functions.

From Theorem 2, we can see that we can learn a model with less excess risk by minimizing
Err(w1, w2). Note that Err(w1, w2) can be easily minimized since density function fY is known
or can be estimated from DY . In particular, if target Y is uniformly distributed on [a, b], we have
Err(w1, w2) = 0 by setting (w1, w2) = (b/2, a/2). In such a case, ĥRA becomes a consistent model,
i.e., R(ĥRA) → R(h∗) as nU, nR → ∞. The convergence rate is O(1/

√
nU + 1/

√
nR), which is

the optimal parametric rate for the empirical risk minimization without additional assumptions when
the enough amount of unlabeled and pairwise comparison data is provided jointly [21].

One important case where target variable Y distributes uniformly is when the target is a “quantile
value”. For instance, we are to build a screening system for credit cards. Then, what we are interested
in is “how much is an applicant credible in the population?”, which means that we want to predict the
quantile value of the “credit score” in the marginal distribution. By definition, we know that such a
quantile value distributes uniformly, and thus we can have a consistent model by minimizing R̂RA.

In general cases, however, we may have Err(w1, w2) > 0, and ĥRA becomes not consistent. Never-
theless, this is inevitable as suggested in the following theorem.

Theorem 3. There exists a pair of joint distributions PX,Y , P̃X,Y that yields the same marginal
distributions of feature PX and target PY , and the same distributions of the pairwise comparison
data PX+,X− but have different conditional expectation EY |X=x [Y ].

Theorem 3 states that there exists a pair of distributions that cannot be distinguished from available
data. Considering that h∗(x) = EY |X=x [Y ] when hypothesis space H is rich enough [11], this
theorem implies that we cannot always obtain a consistent model. Still, in Section 6, we show that
hRA empirically exhibits a similar accuracy to a model learned from ordinary coupled data.

5 Empirical risk minimization by target transformation

In this section, we introduce another method to uncoupled regression with pairwise comparison data,
called the target transformation (TT) method. Whereas the RA method minimizes the approximation
of the original risk, the TT method transforms the target variable so that it marginally distributes
uniformly and minimizes an unbiased estimator of the risk defined based on the transformed variable.

Although there are several ways to map Y to a uniformly distributed random variable, one natural
candidate would be CDF FY (Y ), which leads to the following risk:

RTT(h) = EX,Y [dφ(FY (Y ), FY (h(X))] . (9)

Since FY (Y ) distributes uniformly on [0, 1] by definition, we can construct the following unbiased
estimator of RTT by the same discussion as in the previous section.

R̂TT(h;λ) = C− 1

nU

∑
xi∈DU

(
(λ− FY (h(xi)))φ′(FY (h(xi))) + φ(FY (h(xi)))

)
− 1

nR

∑
(x+

i ,x
−
i )∈DR

(
1− λ
2

φ′(FY (h(x
+
i )))−

λ

2
φ′(FY (h(x

−
i )))

)
,

where λ is a hyper-parameter to be tuned. The TT method minimizes R̂TT to learn a model. However,
the learned model is, again, not always consistent in terms of original risk R. This is because, in rich
enough hypothesis spaceH, the minimizer hTT = F−1Y

(
EY |X=x [FY (Y )]

)
of (9) is different from

EY |X=x [Y ], the minimizer of (1), unless target Y distributes uniformly. Hence, for a non-uniform
target, we cannot always obtain a consistent model. However, we can still derive an estimation error
bound if hTT ∈ H and target variable Y is generated as

Y = htrue(X) + ε, (10)
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where htrue : X → Y is the true target function and ε is a zero-mean noise variable bounded in
[−σ, σ] for some constant σ > 0.

Theorem 4. Assume that target variable Y is generated by (10) and hTT ∈ H. If the pseudo-
dimensions of {x→ φ′(FY (h(x)))|h ∈ H}, {x→ φ′(FY (h(x)))|h ∈ H} are finite and there exist
constants P > p > 0 such that p ≤ fY (y) ≤ P for all y ∈ Y , we have

R(ĥTT) ≤ R(htrue) +
(
P

p
σ

)2

+O

√ log 1/δ

nU

+O

√ log 1/δ

nR


with probability 1− δ for φ(x) = x2, where ĥTT is the minimizer of risk R̂TT inH.

The proof can be found in Appendix C.5. From Theorem 4, we can see that ĥTT is not necessarily
consistent. Again, this is inevitable due to the same reason as the RA method. We can see that the
error in the TT method is explicitly dependent on the noise, and thus, it is advantageous when the
target contains less noise. In Section 6, we empirically compare these methods and show that which
method is more suitable differs from case to case.

6 Experiments

In this section, we present the empirical performances of the proposed methods in experiments based
on synthetic data and benchmark data. We show that our proposed methods outperform the naive
method described in (4) and existing method [24]. Moreover, it is shown that our methods have a
similar performance to a model learned from ordinary supervised learning with coupled data.

Before presenting the results, we describe the detailed procedure of experiments. In all experiments,
we consider l2-loss l(z, t) = (z−t)2, which corresponds to setting φ(x) = x2 in Bregman divergence
dφ(t, z). The performance is also evaluated by the mean squared error (MSE) in the held-out test
data. We repeat each experiment for 100 times and report the mean and the standard deviation. We
employ hypothesis space of linear functions H = {h(x) = θ>x | θ ∈ Rd} for the RA method. A
slightly different hypothesis spaceH′ = {h(x) = F−1Y (σ(θ>x)) | θ ∈ Rd} is employed for the TT
method in order to simplify the loss, where σ is logistic function σ(x) = 1/(1 + exp(−x)). The
procedure of hyper-parameter tuning in RRA and RTT can be found in Appendix A.

6.1 Comparison with baseline methods

We introduce two types of baseline methods here. One is a naive application of the ranking methods
described in (4), in which we use SVMRank [13] as a ranking method. We use the linear kernel in
SVMRank. The other is an ordinary supervised linear regression (LR), in which we fit a linear model
using the true labels in unlabeled data DU. Note that LR does not use pairwise comparison data DR.

Result for synthetic data. First, we show the result for the synthetic data, in which we know the
true marginal PY . We sample 5-dimensional unlabeled data DU from normal distribution N (0, Id),
where Id is the identity matrix. Then, we sample true unknown parameter θ such that ‖θ‖2 = 1
uniformly at random. Target Y is generated as Y = θ>X + ε, where ε is a noise following
N (0, 0.01). Consequently, PY corresponds to N (0,

√
1.01), which is utilized in the proposed

methods and the ranking baseline. The pairwise comparison data is generated by (2). We first
sample two featuresX,X ′ from N (0, Id), and then, compare them based on the target value Y, Y ′

calculated by Y = θ>X + ε. We fix nU to 100,000 and alter nR from 20 to 10,240 to see the change
of performance with respect to the size of pairwise comparison data.

The results are presented in Figure 1. From this figure, we can see that with sufficient pairwise
comparison data, the performance of our methods is significantly better than SVMRank baseline and
close to LR. This is astonishing since LR uses the true label of DU, while our methods do not. In
this experiment, the RA method consistently performs better than the TT method, though this is not
universal as shown in the experiments on benchmark datasets.

Note that the TT method is unstable when the size of pairwise comparison data is small. We observed
this phenomenon in all experiments. This is because we learn the quantile value when we minimize
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Figure 1: MSE for Synthetic Data
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Figure 2: MSE for housing Dataset

Table 1: MSE for benchmark datasets when nR is 5,000. The bold face means the outstanding
method in uncoupled regression methods (SVMRank, RA and TT) chosen by the Welch t-test with
significance level 5%. Note that LR does not solve uncoupled regression since it uses labels in DU.

Supervised Regression Uncoupled Regression

Dataset LR SVMRank RA TT

housing 24.5(5.0) 110.3(29.5) 29.5(6.9) 22.5(6.2)
diabetes 3041.9(219.8) 8575.9(883.1) 3087.3(256.3) 3127.3(278.8)
airfoil 23.3(2.2) 62.1(7.6) 23.7(2.0) 22.7(2.2)
concrete 109.5(13.3) 322.9(45.8) 111.7(13.2) 139.1(17.9)

powerplant 20.6(0.9) 372.2(34.8) 21.8(1.1) 22.0(1.0)
mpg 12.1(2.04) 125(15.1) 12.8(2.16) 10.3(2.08)

redwine 0.412(0.0361) 1.28(0.112) 0.442(0.0473) 0.466(0.0412)
whitewine 0.574(0.0325) 1.58(0.0691) 0.597(0.0382) 0.644(0.0414)
abalone 5.05(0.375) 20.9(1.44) 5.26(0.372) 5.54(0.424)

RTT, and this can be severely inaccurate when the size of pairwise comparison data is small. On the
other hand, RRA directly minimizes the approximation of true risk R, which is less sensitive to the
size of DR.

Result for benchmark datasets. We conducted the experiments for the benchmark datasets as
well, in which we do not know true marginal PY . The details of benchmark datasets can be found in
Appendix A. We use the original features as unlabeled data DU. Density function fY is estimated
from target values in the dataset by kernel density estimation [25] with the Gaussian kernel. Here, the
bandwidth of Gaussian kernel is determined by cross-validation. The pairwise comparison data is
constructed by comparing the true target values of two data points uniformly sampled from DU.

Figure 2 shows3 the performance of each method with respect to the size of pairwise comparison data
for the housing dataset. We can see that the proposed methods significantly outperform SVMRank
and approach to LR with increasing nR. This fact suggests that the estimation error in fY has little
impact on the performance. The results for various datasets when nR is 5,000 are presented in Table 1,
in which both proposed methods show the promising performance. Note that the method with less
MSE differs by each dataset, which means that we cannot easily judge which method is better.

6.2 Comparison with other uncoupled regression methods

Here, we show the results of the empirical comparison between our methods and the method proposed
in Pananjady et al. [24], which is another uncoupled regression method. Note that Pananjady et al.
[24] considered a different problem, since they assume that the true regression function is exactly a
linear function of the features and ignore the comparative data. Hence, we synthetically create data
that all three methods are applicable and conduct comparison based on it.

3From Figure 2, we can again see that the TT method performs unstably when nR is small for benchmark
data, which causes the strange profile in the log plot. Since the standard deviation of the TT method is large, the
mean accuracy minus the standard deviation goes negative, which diverges to −∞ in the plot.
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Figure 4: MSE for 1-dimensional synthetic
data following uniform distribution

This method is to learn the optimal coupling of unlabeled data DU = {xi}nU
i=1 and the target values

DY = {yi}nU
i=1, assuming the linear relationship between them. Formally, the method is to find

optimal parameter θ̂ and permutation σ̂ : [nU]→ [nU] that minimizes the MSE:

(θ̂, σ̂) = arg min
θ∈Rd,σ∈Pn

nU∑
i=1

(yσ(i) − x>i θ)2,

where Pn is the set of permutations of n items. Pananjady et al. [24] proved that this minimization
is NP-hard in general but can be solved with O(nU log nU) computation when d = 1. Hence, we
conduct the experiment based on synthetic 1-dimensional data.

The data is generated as follows. Unlabeled dataDU = {xi}nU
i=1 is sampled from a certain distribution,

where the size of data is fixed as nU = 100, 000. Here, we used normal distribution N (0, 1) and
uniform distribution on [−1, 1]. We set θ = −1 and generate target Y as Y = X + ε, where ε is a
noise followingN (0, 0.25). We randomly shuffle target values yi to build DY . The comparative data
is constructed in the same way as the synthetic data described in Section 6.1. Note that the method
in Pananjady et al. [24] ignores comparative data, hence the performance does not depend on the
amount of comparative data.

The results4 are shown in Figures 3 and 4, which show the superiority of our method. This is mainly
due to the difference in data used in each method. The method in Pananjady et al. [24] only uses the
unlabeled data and target values, while our methods utilize the comparative data as well. We can see
that this additional information greatly contributes to better performance.

7 Conclusions

In this paper, we proposed novel methods for uncoupled regression by utilizing pairwise comparison
data. We introduced two methods, the risk approximation (RA) method, and the target transformation
(TT) method, for the problem. The RA method is to approximate the expected Bregman divergence
by the linear combination of expectations of given data, and the TT method is to learn a model for
quantile values and uses the inverse of the CDF to predict the target. We derived estimation error
bounds for each method and showed that the learned model is consistent when the target variable
distributes uniformly. Furthermore, the empirical evaluations based on both synthetic data and
benchmark datasets suggested the competence of our method. The empirical results also indicated
the instability of the TT method when the size of pairwise comparison data is small, and we may
need some regularization scheme to prevent it, which is left for future work.
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Table 2: Information of benchmark datasets.

Dataset Datasize d Source

housing 404 13 UCI Repository
airfoil 1202 5 UCI Repository
concrete 824 8 UCI Repository

powerplant 7654 4 UCI Repository
mpg 313 7 UCI Repository

redwine 1279 11 UCI Repository
whitewine 3918 11 UCI Repository
abalone 3341 10 UCI Repository
diabetes 353 10 [10]

A Experiments details

In this appendix, we explain the detailed setting of experiments. First, we describe the procedure of
hyper-parameter tuning during the experiments. Then, we provide detailed information on benchmark
datasets.

A.1 Procedure of hyper-parameter tuning

To construct risk R̂RA, we need to tune λ,w1, w2, which is done by minimizing empirically approxi-
mated Err(w1, w2) defined in (8). Let y, y be the 0.99-quantile and 0.01-quantile of PY , respectively.
Note that we can calculate these quantities since we have access to fY . Then, we define {y(i)}nsplit+1

i=1
as yi = y + (i− 1)/nsplit(y − y), by which Err(w1, w2) is approximated as

Err(w1, w2) '
nsplit+1∑
i=1

fY (yi)|yi − w1FY (yi)− w2(1− FY (yi))|.

We employ w1, w2 that minimize the empirical approximation above with nsplit = 1000 and fix λ to
be (w1 + w2)/2 in all cases.

For the TT method, we employ hypothesis space H′ = {h(x) = F−1Y (σ(θ>x)) | θ ∈ Rd}, which
is slightly different from hypothesis space of liner functionsH = {h(x) = θ>x | θ ∈ Rd}, where
σ is logistic function σ(x) = 1/(1 + exp(−x)) This simplifies the loss function and reduces the
computational time. We fix λ = 1/2 for this risk, which yields the loss

R̂TT(h) = C− 1

nU

∑
xi∈DU

(
1

2
− σ(θ>xi)

)
φ′(σ(h(xi))) + φ(σ(θ>xi))

− 1

nR

∑
(x+

i ,x
−
i )∈DR

1

4
φ′(σ(θ>x+

i ))−
1

4
φ′(σ(θ>x−i )).

We minimize this loss with respect to θ.

A.2 Benchmark dataset details

We use eight benchmark datasets from UCI repository [8] and one (diabetes) from Efron et al. [10].
The details of datasets can be found in Table 2. As preprocessing, we excluded all instances that
contain missing values, and we encoded a categorical feature in abalone as a one-hot vector.

B Estimating density function and cumulative distribution function

In this section, we discuss the case where the true probability density function fY is not given. In
such a case, we need a slight modification of proposed methods since we have to estimate fY from
the set of target values DY = {yi}nY

i=1, where nY is the size of DY . We first introduce a modification
of the RA method and derive an estimation error bound for it. Then, we discuss the same for the TT
method as well.
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B.1 Modification of the risk approximation method

Although R̂RA does not depend on fY or FY , we need the information of PY when tuning weights
w1, w2, which is done by the minimization of Err defined in (8). Since, Err can not be directly
calculated without fY and FY , we propose another quantity Êrr below, which substitute expectation
over PY and CDF function FY to empirical mean and the empirical CDF.

Êrr(w1, w2) =
1

nY

nY∑
i=1

|yi − w1F̂Y (yi)− w2(1− F̂Y (yi))|,

where F̂Y is the empirical CDF defined as

F̂Y (y) =
1

nY

nY∑
i=1

1 [yi ≤ y] .

Note that Êrr can be minimized given DY . To show the validity of the method, we establish an
estimation error bound involving Êrr as follows.

Theorem 5. Let Y be bounded in Y ⊆ [−L,L]. Then, for all w1, w2 ∈ [−L,L], we have

|Err(w1, w2)− Êrr(w1, w2)| ≤ O
(√

log δ

nY

)

with probability 1− 2δ.

Proof. Since the weights are bounded, from Mohri et al. [22, Thm. 10.3], we have

Err(w1, w2) ≤
1

nY

nY∑
i=1

|yi − w1FY (yi)− w2(1− FY (yi))|+O

(√
log 1/δ

m

)
,

with probability 1− δ. Furthermore, from Dvoretzky-Kiefer-Wolfowitz inequality [20], we have

‖FY (y)− F̂Y (y)‖∞ ≤
√

log(2/δ)

2nY
(11)

with probability 1− δ, which yields

1

nY

nY∑
i=1

|yi − w1FY (yi)− w2(1− FY (yi))| ≤ Êrr +O

(√
log 1/δ

m

)
.

Therefore, from the union bound, we have

|Err(w1, w2)− Êrr(w1, w2)| ≤ O
(√

log δ

nY

)

with probability 1− 2δ.

From Theorems 2 and 5, we have

R(ĥRA) ≤ R(h∗) +O

√ log 1/δ

nU

+O

√ log 1/δ

nR

+O

√ log 1/δ

nY

+M Êrr(w1, w2),

with probability 1− 5δ under the conditions given in these theorems.
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B.2 Modification on the target transformation method

Let R̃TT be the risk which substitute FY in RTT to empirical CDF, defined as

R̃TT(h;λ) = C− 1

nU

∑
xi∈DU

(
(λ− F̂Y (h(xi)))φ′(F̂Y (h(xi))) + φ(F̂Y (h(xi)))

)
− 1

nR

∑
(x+

i ,x
−
i )∈DR

(
1− λ
2

φ′(F̂Y (h(x
+
i )))−

λ

2
φ′(F̂Y (h(x

−
i ))),

)
.

Using (11), we have

|R̂TT(h)− R̃TT(h)| ≤ O

√ log 1/δ

nY


for all h ∈ H with probability 1− δ. Let h̃TT be the minimizer of R̃TT in hypothesis spaceH. Then,
under the condition given in Theorem 4, we have

RTT(h̃TT) ≤ RTT(hTT) +O

√ log 1/δ

nY

+O

√ log 1/δ

nR

+O

√ log 1/δ

nU

 ,

with probability 1− 4δ, therefore we have

R(h̃TT) ≤ R(h∗) + 2

(
P

p
σ

)2

+O

√ log 1/δ

nY

+O

√ log 1/δ

nR

+O

√ log 1/δ

nU


with probability 1− 4δ, which can be shown by the slight modification of the proof of Theorem 4.

C Proofs

C.1 Proof of Lemma 1

Lemma 1 can be proved as follows.

Proof of Lemma 1. Let fX+ be the probability density function (PDF) of PX+ . From the definition
ofX+, we have

fX+(x) =
1

Z

∫∫∫
fX,Y (x, y)fX,Y (x

′, y′)1 [y > y′] dydy′dx′

=
1

Z

∫
fX,Y (x, y)

[∫
fY (y

′)1 [y > y′] dy′
]
dy

=
1

Z

∫
fX,Y (x, y)FY (y)dy,

where Z is the normalizing constant and fX,Y (y) is the PDF of PX,Y . Now, Z is calculated as

Z =

∫∫
fX,Y (x, y)FY (y)dydx

=

∫
fY (y)FY (y)dy

=
1

2
,

where the last equality holds from the integration by parts. Therefore, we have

EX+

[
φ′(X+)

]
=

∫
fX+(x)φ′(x)dx

=

∫
2

{∫
fX,Y (x, y)FY (y)dy

}
φ′(x)dx

= EX,Y [FY (Y )φ′(x)] .

The expectation over PX− can be derived in the same way.
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C.2 Proof of Theorem 2

Here, we show the proof of Theorem 2. First, we show the gap between R and RRA can be bounded
as follows.

Lemma 2. For all h ∈ H, such that |φ′(h(x))| ≤M for all x ∈ X , we have

|R(h)−RRA(h;λ;w1, w2)| ≤MErr(w1, w2)

for all λ ∈ R.

Proof. From Lemma 1 and the fact EX [φ′(X)] = 1
2EX+ [φ′(X+)] + 1

2EX− [φ′(X−)], we have

|R(h)−RRA(h;λ,w1, w2)|
=
∣∣EX,Y [Y φ′(h(X))]− w1EX+

[
φ′(h(X+))

]
− w2EX−

[
φ′(h(X−))

]∣∣
=

∣∣∣∣∫ fX,Y (x, y)φ
′(h(x)){y − 2w1FY (y)− 2w2(1− FY (y))}dydx

∣∣∣∣
≤
∫
fX,Y (x, y) |φ′(h(x))| |y − 2w1FY (y)− 2w2(1− FY (y))|dydx

≤M
∫
fY (y) |y − 2w1FY (y)− 2w2(1− FY (y))|dy

≤MErr(w1, w2).

Now, Theorem 2 can be derived as follows.

Proof of Theorem 2. Let d̃, d̃′ be the pseudo-dimensions defined as

d̃ = Pdim({x→ φ′(h(x)) | h ∈ H}),
d̃′ = Pdim({x→ h(x)φ′(h(x))− φ(h(x)) | h ∈ H}),

where Pdim(F) denotes the pseudo-dimension of the functional space F . From the assumptions in
Theorem 2, using the discussion in Mohri et al. [22, Theorem 10.6], each of following bound holds
with probability 1− δ for all h ∈ H.∣∣∣∣∣∣EX+

[
φ′(h(X+))

]
− 1

nR

∑
x+

i ∈D
+
R

φ′(h(x+
i ))

∣∣∣∣∣∣ ≤M
√

2d̃ log enR

d̃

nR
+M

√
log 1

δ

2nR
,

∣∣∣∣∣∣EX− [φ′(h(X−))]− 1

nR

∑
x−i ∈D

−
R

φ′(h(x−i ))

∣∣∣∣∣∣ ≤M
√

2d̃ log enR

d̃

nR
+M

√
log 1

δ

2nR
,

∣∣∣∣∣∣EX [g(X)]− 1

nU

∑
xi∈D+

U

g(xi)

∣∣∣∣∣∣ ≤ m
√

2d̃′ log enU

d̃′

nU
+m

√
log 1

δ

2nU
,

where g(x) = h(x)φ′(h(x)) + φ(h(x)). From the uniform bound, we have

|RRA(h;w1, w2)− R̂RA(h;λ,w1, w2)|

≤
(∣∣∣∣w1 −

λ

2

∣∣∣∣+ ∣∣∣∣w2 −
λ

2

∣∣∣∣)
M

√
2d̃ log enR

d̃

nR
+M

√
log 1

δ

2nR


+ (m+ λM)

√2d̃′ log enU

d̃′

nU
+

√
log 1

δ

2nU


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with probability 1− 3δ for all h ∈ H. Hence, with probability 1− 3δ, we have
R(ĥRA)−R(h∗)
≤ RRA(ĥRA;λ,w1, w2)−RRA(h

∗;λ,w1, w2) + |R(h∗)−RRA(h
∗;λ,w1, w2)|

+ |R(ĥRA)−RRA(ĥRA;λ,w1, w2)|
≤ (RRA(ĥRA;λ,w1, w2)− R̂RA(h

∗;λ,w1, w2))

− (RRA(h
∗;λ,w1, w2)− R̂RA(h

∗;λ,w1, w2)) + 2MErr(w1, w2)

≤ (RRA(ĥRA;λ,w1, w2)− R̂RA(ĥRA;λ,w1, w2))

− (RRA(h
∗; , λ, w1, w2)− R̂RA(h

∗;λ,w1, w2)) + 2MErr(w1, w2)

≤ O

√ log 1/δ

nU

+O

√ log 1/δ

nR

+ 2MErr(w1, w2),

where the second inequality holds from the fact R̂RA(ĥRA;λ,w1, w2) ≤ R̂RA(ĥ
∗;λ,w1, w2) and

Lemma 2.

C.3 Proof of Theorem 1

Theorem 1 can be shown as follows.

Proof of Theorem 1. The variance of R̂RA denoted as Var
[
R̂RA(h;λ,w1, w2)

]
can be expressed as

Var
[
R̂RA(h;λ,w1, w2)

]
=

(
w1 −

λ

2

)2 σ2
+

nR
+

(
w2 −

λ

2

)2 σ2
−
nR

when nU →∞. By solving the above quadratic optimization problem, we have

arg min
λ

Var
[
R̂RA(h;λ,w1, w2)

]
=

2(w1σ
2
+ + w2σ

2
−)

σ2
+ + σ2

−
.

C.4 Proof of Theorem 3

We can construct a simple example satisfies the conditions in Theorem 3 as follows.

Proof. Let fX,Y , f̃X,Y be the PDF of PX,Y , P̃X,Y , respectively. If we consider X = [−1, 1] and
Y = [0, 4] and these PDF to be

fX,Y (x, y) =

{
1
6 (y ∈ [0, 2] ∪ [3, 4]),

0 (otherwise),

f̃X,Y (x, y) =



1
8 (x ∈ [−1, 0), y ∈ [0, 1)),
1
4 (x ∈ [−1, 0), y ∈ [1, 2)),
1
8 (x ∈ [−1, 0), y ∈ [3, 4]),
5
24 (x ∈ [0, 1], y ∈ [0, 1)),
1
12 (x ∈ [0, 1], y ∈ [1, 2)),
5
24 (x ∈ [0, 1], y ∈ [3, 4]),

0 (otherwise).

Then, by the simple calculation, we can see that they have the same PDF
fX(x), fY (y), fX+,X−(x

+, x−), each represents the PDF of PX , PY , PX+,X− , respectively,
which are

fX(x) = 0.5,

fY (y) =

{
1
3 (y ∈ [0, 2] ∪ [3, 4]),

0 (otherwise),

fX+,X−(x
+, x−) = 0.25.
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However, the conditional expectation EY |X=x [Y ] defined on PX,Y is

EY |X=x [Y ] =
11

6
,

while the conditional expectation ẼY |X=x[Y ] defined on P̃X,Y is

ẼY |X=x[Y ] =

{
7
4 (x ∈ [−1, 0)),
23
12 (x ∈ [0, 1]).

C.5 Proof of Theorem 4

The Theorem 4 can be shown as follows.

Proof of Theorem 4. We first show that under the conditions, we have

‖htrue(x)− hTT(x)‖∞ ≤
σP

p
.

Since (FY (y))′ = fY (y) ≤ P and (F−1Y (q))′ = 1/fY (F
−1(q)) ≤ 1/p for any y ∈ Y and q ∈ [0, 1],

FY (y), F
−1
Y (q) are P, 1/p-Lipschitz continuous, respectively. Therefore, we have

hTT(x) = F−1Y (EY |X=x [FY (Y )])

= F−1Y (Eε [FY (htrue(x) + ε)])

≤ F−1Y (FY (htrue(x) + σP ))

≤ htrue(x) +
σP

p

for all x ∈ X . With the same discussion, we have |hTT(x)− htrue(x)| ≤ σP
p . Therefore, we have

‖htrue(x)− hTT(x)‖∞ ≤
σP

p
.

Now, if φ(x) = x2, which means R(h) = EX,Y
[
(h(X)− Y )2

]
, we have

R(ĥTT) = EX,Y
[
(ĥTT(x)− Y )2

]
= EX,Y

[
(ĥTT(x)− ĥtrue(x) + ĥtrue(x)− Y )2

]
= EX

[
(ĥTT(x)− ĥtrue(x))2

]
+ EX,Y

[
(ĥtrue(x)− Y )2

]
+ 2EX,Y

[
(ĥTT(x)− ĥtrue(x))(ĥtrue(x)− Y )

]
= EX

[
(ĥTT(X)− htrue(X))2

]
+ EX,Y

[
(htrue(X)− Y )2

]
≤ R(htrue) + 2EX

[
(ĥTT(x)− hTT(x))

2
]
+ 2EX

[
(htrue(x)− hTT(x))

2
]
.

Since ‖hTT(x)− htrue(X)‖∞ ≤ σP
p , we have

EX
[
(htrue(X)− hTT(X))2

]
≤
(
σP

p

)2

.

Furthermore, using the characteristic of expectation, if φ(x) = x2, which means RTT(h) =
EX,Y

[
(FY (h(X))− FY (Y ))2

]
, we have

RTT(ĥTT)

= EX,Y
[
(FY (ĥTT(X))− FY (Y ))2

]
= EX,Y

[
(FY (ĥTT(X))− FY (hTT(X)))2

]
+ EX,Y

[
(FY (Y )− FY (hTT(X)))2

]
= EX,Y

[
(FY (ĥTT(X))− FY (hTT(X)))2

]
+RTT(hTT).
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Since (FY (y))
′ ≥ p, we have

EX
[
(ĥTT(X)− hTT(X))2

]
≤ 1

p2
EX,Y

[
(FY (ĥTT(X))− FY (hTT(X)))2

]
=

1

p2

(
RTT(ĥTT)−RTT(hTT)

)
≤ O

√ log 1/δ

nU

+O

√ log 1/δ

nR


with probability 1− 3δ, where the last inequality holds from the same discussion as in Theorem 2.
Note that |φ′(FY (h(x)))|, |FY (h(x))φ′(FY (h(x)))−φ(FY (h(x)))| are bounded since FY (h(x)) ∈
[0, 1] by definition. Combining these inequalities, we can see that

R(ĥTT) ≤ R(htrue(x)) + 2

(
σP

p

)2

+O

√ log 1/δ

nU

+O

√ log 1/δ

nR


with probability 1− 3δ.
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