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Abstract

Under partial-label learning (PLL) where, for each
training instance, only a set of ambiguous candidate labels
containing the unknown true label is accessible, contrastive
learning has recently boosted the performance of PLL on vi-
sion tasks, attributed to representations learned by contrast-
ing the same/different classes of entities. Without access
to true labels, positive points are predicted using pseudo-
labels that are inherently noisy, and negative points often
require large batches or momentum encoders, resulting in
unreliable similarity information and a high computational
overhead. In this paper, we rethink a state-of-the-art con-
trastive PLL method PiCO [24], inspiring the design of a
simple framework termed PaPi (Partial-label learning with
a guided Prototypical classifier), which demonstrates sig-
nificant scope for improvement in representation learning,
thus contributing to label disambiguation. PaPi guides the
optimization of a prototypical classifier by a linear classi-
fier with which they share the same feature encoder, thus ex-
plicitly encouraging the representation to reflect visual sim-
ilarity between categories. It is also technically appealing,
as PaPi requires only a few components in PiCO with the
opposite direction of guidance, and directly eliminates the
contrastive learning module that would introduce noise and
consume computational resources. We empirically demon-
strate that PaPi significantly outperforms other PLL meth-
ods on various image classification tasks.

1. Introduction

The excellent performance of modern deep neural net-
works (DNNs) is attributed to the large-scale fully super-
vised training data, but the requirement for high-quality data
poses a challenge for the practical application. As a result,
non-expert but cheap labelers are often resorted as an ap-
pealing substitute, which inevitably leads to low-quality la-
beled data due to their expertise limitation. A typical sit-
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Figure 1. An image of “Eagle” in PLL is equipped with a candidate
label set. PLL learns from such ambiguous supervision, in contrast
to its supervised counterpart where only the true label is chosen.

uation is that the labelers have difficulty in making an ac-
curate judgement about an instance from multiple ambigu-
ous labels, and therefore choose multiple likely ones. For
example, in Fig. 1, it can be difficult for labelers without
specialist knowledge to identify an Eagle from a Hawk, so
both “Eagle” and “Hawk” are labeled as possible candi-
dates for the true label. Learning from such training in-
stances with a set of possible candidate labels, where only
one fixed but unknown is true, is known as partial-label
learning (PLL) [3, 4, 15, 22–24, 32, 38, 40]. This problem
naturally arises in various important applications in the real
world such as web mining [13] and image annotation [1].

Research into PLL dates back some twenty years and a
number of practical approaches have been proposed, which
can be divided into identification-based strategies [9, 20,
32, 38, 41] and average-based strategies [3, 8], depending
on how they treat candidate labels. Recently, DNNs bring
the research of PLL into a new era [4, 15, 26–28, 36, 37],
among which PiCO [24] has achieved state-of-the-art per-
formance on multiple benchmarks. It introduces a con-
trastive learning module into PLL that uses predictions of
one linear classifier to select pseudo positive samples for
each anchor point and maintains a queue of negative sam-
ples. Meanwhile, a momentum encoder is used to improve
consistency. In addition, PiCO adds a prototypical classifier
module (called prototype-based in the original) to guide the
update of the linear classifier, which is based on the idea that
there exists an embedding space where points from the same
class cluster around its prototype [19]. PiCO claims credit
for its success to the mutual benefit of contrastive learning
and prototype-based label disambiguation.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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(a) CIFAR-10 (q = 0.7)
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(b) CIFAR-100 (q = 0.2)
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(c) CIFAR-10 (q = 0.7)
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(d) CIFAR-100 (q = 0.2)

Figure 2. Visualizations of impacts of the unreliability of pseudo positives and the improper direction of disambiguation guidance in PiCO.
In (a)-(b), PiCO-v2 means positives are selected based on fully supervised information, i.e., true labels are known by the contrastive learning
module. Further, PiCO-v3 removes the guidance of prototypical classifier to linear classifier, such that the linear classifier performs self-
teaching. The red lines in (c)-(d) indicate the number of samples that were correctly classified by linear classifier and incorrectly classified
by prototypical classifier per mini-batch, and the green lines are the opposite. The first 100 epochs shown in (d) are in a warm-up period.
q means the flipping probability of each incorrect label, which will be introduced in Sec. 3.1.

In this paper, we rethink the two modules in PiCO and
empirically point out that they do not work as well in
practice as one might think due to the unreliability of the
pseudo positives and the improper direction of disambigua-
tion guidance. Fig. 2a and Fig. 2b show accuracy of three
versions of PiCO. Fig. 2c and Fig. 2d show the performance
differences between the linear and prototypical classifier
during training. Fig. 2 delivers two important messages:
(1) noisy pseudo-labels do lead to significant performance
degradation, and (2) the phenomenon “poor teacher teaches
good student” possibly happens. Specifically, the good stu-
dent, the linear classifier, always made more correct pre-
dictions than its teacher, the prototypical classifier, at the
beginning. In some cases, due to the forced direction of
guidance, the teacher performed better than the student for
a while, but soon the teacher had nothing new to teach the
student, shown in Fig. 2c. And sometimes the student’s ad-
vantage was even maintained until convergence as shown
in Fig. 2d. These also explain the significant improvement
compared to PiCO-v2 after PiCO-v3 made the clever stu-
dent perform self-teaching.

Inspired by the above observations, we propose a sim-
ple PLL framework termed PaPi, i.e., Partial-label learn-
ing with a guided Prototypical classifier. PaPi directly
eliminates the contrastive learning module which introduces
noisy positives, and adopts the opposite direction of disam-
biguation guidance compared to PiCO. Specifically, PaPi
produces a similarity distribution over classes for each sam-
ple based on a softmax function over distances to class-
specific prototypes in a projected low-dimensional space.
Afterwards, PaPi aligns the distribution with the disam-
biguated probability post-processed from one linear clas-
sifier prediction. Meanwhile, the linear classifier performs
self-teaching wherein each stage of learning is guided by
the current and previous stages. We conduct extensive ex-
periments on multiple image classification tasks. PaPi sur-

passes the state-of-the-art PLL methods by a large margin,
with a 4.57% improvement on CIFAR-100 in very difficult
scenarios. Moreover, PaPi learns effective representations
efficiently without using neither large batches nor a momen-
tum encoder, where training instances from the same class
are grouped into tighter clusters. Our main contributions
are summarized as follows:

• We propose a simple PLL framework termed PaPi
which explicitly encourages the representation to re-
flect visual similarity between categories, such that
PaPi is remarkable for improving the class-level dis-
crimination of learned representation.

• Extensive experiments on various image classification
datasets with different generation processes of candi-
date labels demonstrate PaPi significantly outperforms
state-of-the-art PLL methods.

2. Related Work
2.1. Partial-Label Learning

A plethora of PLL works purify the candidate labels
with a common goal to select the most likely true label
in the training phase, which are named as identification-
based methods [16, 20, 41]. For this purpose, a maximum
likelihood model is proposed in [9] using the expectation-
maximization algorithm, which pioneers this main research
route. In addition, some works [32, 38] treat the true label
as a latent variable and identify it by leveraging the topo-
logical information from feature space. In contrast to this
research route, average-based methods [3, 8, 40] treat all
the candidate labels equally and the prediction is made by
averaging their modeling outputs. However, most of the
above methods need elaborately designed learning objec-
tives and specific solutions, which make them inefficient
for scaling up to large scale datasets. With the advances
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Figure 3. Illustration of PaPi. With a prototypical alignment loss term, we reduce the diversity between a prototypical similarity distribution
over classes for each sample based on a softmax function over distances to class-specific prototypes in a projected low-dimensional space
and the disambiguated probability post-processed from one linear classifier. Using a cross-entropy loss, we learn the linear classifier in a
self-teaching fashion. Note that the dotted gray arrow indicates the stop gradient operation.

in the deep learning era, PLL has been broadly explored
in recent works [4, 15, 24, 27–29, 36, 37]. PRODEN [15]
accomplishes the update of the model and identification
of true labels seamlessly along with a classifier-consistent
risk estimator. Two methods which are risk-consistent and
classifier-consistent are derived based on the uniform par-
tial labels generation process [4]. VALEN [33] applies la-
bel enhancement [31, 34] to iteratively recover label distri-
bution for each instance, where instance-dependent PLL is
firstly explored. [14] proposes a general scenario called un-
reliable PLL where the ground-truth label can be unneces-
sarily included in the candidate label set. Consistency reg-
ularization is revisited in deep PLL [27], which employs
regularization on candidate labels based on specific data
augmentation techniques. In this paper, we rethink a state-
of-the-art method PiCO [24] and propose a simple frame-
work named PaPi, which demonstrates significant scope for
improvement in representation learning, thus contributing
to label disambiguation. Moreover, current methods can-
not effectively handle both uniform and instance-dependent
PLL setting, especially when they are confronted with high
ambiguity levels and instance-dependent ambiguity.

2.2. Prototype Learning

Prototype learning (PL) learns a representation space
where instances are imposed to be closer to its corre-
sponding class prototype. PL has demonstrated robust per-
formance in few-shot learning [18, 19], zero-shot learn-
ing [35], noisy-label learning [11], semi-supervised learn-
ing [6], class-imbalanced learning [25], contrastive learn-
ing [12], etc. For example, MoPro [11] aims to learn an em-
bedding space where instances from the same class gather
around its class prototype, which is achieved with a proto-
typical contrastive loss and an instance contrastive loss.

3. The Proposed Framework
In this section, we firstly introduce the preliminaries in

Sec. 3.1. Then we present our PaPi in detail in Sec. 3.2.
Fig. 3 gives a brief illustration of PaPi.

3.1. Preliminaries

Notations. Let X be the input space, Y = {1, 2, ...,K}
be the label space with K class labels. One of the key
differences between PLL and supervised learning is that
the latent ground-truth label yi ∈ Y of an instance xi

is not provided but always included in a candidate label
set Yi ⊆ Y . Following [24], we generate uniform par-
tial labels by flipping each incorrect label ȳi ̸= yi with
a probability q = P (ȳi ∈ Yi|ȳi ̸= yi). For generating
instance-dependent partial labels, we follow the same pro-
cedure in [33]. We set the flipping probability of each in-
correct label j as qj(xi) =

ĝj(xi)
maxk∈Ȳi

ĝk(xi)
with a pre-trained

DNN ĝ, where Ȳi is the incorrect label set of xi. Given a
PLL training dataset D = {(xi, Yi)|1 ≤ i ≤ N}, the goal
of PLL is to learn a mapping function which can predict the
true label related to the unseen inputs.

Overview. For each sample (xi, Yi), we generate one
weakly-augmented view (aug1(xi), Yi) and one strongly-
augmented view (aug2(xi), Yi), where aug1(·) and aug2(·)
represent weak and strong augmentation function respec-
tively. Then both augmented samples are separately fed into
the weight-shared encoder network f(·), yielding a pair of
representations v1

i = f(aug1(xi)) and v2
i = f(aug2(xi)).

In order to improve the representation quality [2,5], we fur-
ther map v1

i to z1
i = g(v1

i ) ∈ Rdp by utilizing a projec-
tor network g(·), which is also operated on v2

i to obtain
z2
i . Therefore, for each instance xi, the corresponding low-
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dimensional representation zi consists of z1
i and z2

i . Note
that z1

i and z2
i are further normalized to the unit sphere in

Rdp , based on which we update class-specific prototypes
C ∈ RK×dp in a moving-average fashion. We call f(·)
and g(·) as representor when the context is clear. Mean-
while, the classifier h(·) receives v1

i as input and outputs
ri = h(v1

i ). Besides the classification loss term imple-
mented by a cross-entropy loss, we propose a prototypical
alignment loss term which reduces the diversity between
a similarity distribution over classes based on a softmax
function over distances to class-specific prototypes and the
probability disambiguated from the linear classifier predic-
tion. Based on the feature encoder shared by linear classifier
and projector, we build the connection between the effective
representation space and the label disambiguation to facili-
tate the model training.

3.2. PLL with A Guided Prototypical Classifier

As we mentioned earlier, PaPi directly eliminates the
contrastive learning module and adopts the opposite direc-
tion of disambiguation guidance compared to PiCO. Specif-
ically, PaPi introduces a prototypical alignment loss term
which guides the optimization of a prototypical classifier.

Prototypical alignment. To begin with, we describe pro-
totypical alignment loss term. Given each sample (xi, Yi),
we produce a prototypical similarity distribution sli over
classes by a softmax function over distances to class-
specific prototypes:

slij =
exp(zl

i · cj/τ)∑K
k=1 exp(z

l
i · ck/τ)

, (1)

where l ∈ {1, 2} denotes different augmentation views, τ
is the temperature and we use cosine similarity as distance
measure. Meanwhile, we update the disambiguated prob-
ability based on the linear classifier prediction via putting
more mass on more possible candidate labels:

uij =


rij∑
l∈Yi

ril
if j ∈ Yi,

0 otherwise.
(2)

where j denotes the indices of candidate labels. Due to the
low-quality prediction in initial training stage, we further
adopt a soft and moving-average mechanism to update the
probability, which also stabilizes the training process:

pi = λpi + (1− λ)ui, (3)

where λ is a balancing factor. Intuitively speaking, initializ-
ing the disambiguated probability pi as a uniform distribu-
tion leads a good start as the representations are less distin-
guishable at the beginning. Therefore, we set pij = 1/|Yi|

Algorithm 1 Pseudo-code of PaPi.

Input: Training dataset D, encoder f(·), projector g(·),
classifier h(·), mini-batch size B, epochs Tmax, hyper-
parameters λ, ϕ, α, γ.

1: for t = 1, 2, ..., Tmax do
2: Shuffle D into |D|

B mini-batches;
3: for b = 1, 2, ..., |D|

B do
4: Obtain the disambiguation target by Eq.(3);
5: Create new training samples by Eq.(5);
6: Generate prototypical similarity distribution for

these new samples by Eq.(1);
7: Update parameter of f(·), g(·) and h(·) by mini-

mizing the empirical risk with loss in Eq.(9);
8: Update prototypes by Eq.(7);
9: end for

10: end for
Output: parameter of f(·) and h(·).

if j ∈ Yi, otherwise pij = 0. Now we implement the per-
sample alignment loss term by minimizing the Kullback-
Leibler (KL) divergence of the prototypical similarity dis-
tribution sli and the disambiguated probability pi:

Li
pa(pi, s

l
i) =

∑
l∈{1,2}

DKL(pi||sli). (4)

Considering that the label ambiguity generally exists in
the training process, we further regularize the model from
memorizing such ambiguous labels to learn more robust
representations inspired by Mixup [39]. Specifically, we
construct new training samples by linearly interpolating a
sample (indexed by i) with another sample (indexed by
m(i)) obtained from the same mini-batch randomly:

x̂i = ϕxi + (1− ϕ)xm(i), (5)

where ϕ ∼ Beta(α, α) and α is a hyperparameter. Denot-
ing ŝli as the prototypical similarity distribution for x̂i, we
define the per-sample augmented alignment loss term as a
weighted combination of two original loss term with respect
to pi and pm(i):

Li
ali = ϕLi

pa(pi, ŝ
l
i) + (1− ϕ)Li

pa(pm(i), ŝ
l
i). (6)

Prototype evolving. Instead of calculating the prototype
representation as the normalized mean representation after
every training iteration, we update the prototype ck of class
k as a moving-average of the normalized representations for
samples with pseudo-label k:

ck = γck + (1− γ)zj , if j ∈ Ik, (7)

where Ik denotes the index set of samples pseudo-labeled
with class k and γ is a balancing factor. Note that the pro-
totypes are further normalized to the unit sphere.
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Dataset Method q = 0.1 q = 0.3 q = 0.5 q = 0.7

Fashion-MNIST

Supervised 96.41 ± 0.02%
PaPi (ours) 95.79 ± 0.16% 95.63 ± 0.16% 95.60 ± 0.07% 95.16 ± 0.10%

DPLL 95.76 ± 0.11% 95.61 ± 0.15% 95.52 ± 0.08% 94.95 ± 0.07%
PiCO 94.89 ± 0.02% 94.35 ± 0.09% 93.87 ± 0.16% 90.05 ± 2.04%

PRODEN 94.62 ± 0.25% 94.40 ± 0.08% 93.92 ± 0.27% 93.62 ± 0.28%
LWS 94.73 ± 0.15% 94.50 ± 0.10% 93.16 ± 0.74% 91.08 ± 0.48%
RC 95.27 ± 0.26% 95.02 ± 0.07% 94.73 ± 0.14% 93.92 ± 0.37%
CC 95.30 ± 0.22% 94.95 ± 0.16% 94.64 ± 0.14% 93.42 ± 0.24%

SVHN

Supervised 97.64 ± 0.03%
PaPi (ours) 97.57 ± 0.04% 97.48 ± 0.07% 97.52 ± 0.04% 97.29 ± 0.07%

DPLL 97.27 ± 0.06% 97.16 ± 0.07% 96.82 ± 0.08% 95.14 ± 0.10%
PiCO 95.71 ± 0.12% 95.48 ± 0.16% 94.58 ± 0.33% 94.15 ± 0.12%

PRODEN 96.82 ± 0.03% 96.61 ± 0.10% 96.60 ± 0.21% 95.49 ± 0.28%
LWS 96.37 ± 0.01% 96.32 ± 0.43% 34.96 ± 0.15% 18.37 ± 1.12%
RC 97.11 ± 0.10% 97.13 ± 0.04% 97.08 ± 0.06% 96.33 ± 0.05%
CC 97.02 ± 0.03% 96.96 ± 0.05% 96.79 ± 0.10% 96.24 ± 0.12%

CIFAR-10

Supervised 97.36 ± 0.04%
PaPi (ours) 97.33 ± 0.06% 97.26 ± 0.08% 96.90 ± 0.09% 96.58 ± 0.07%

DPLL 95.85 ± 0.22% 95.57 ± 0.15% 95.31 ± 0.11% 94.08 ± 0.16%
PiCO 95.09 ± 0.31% 94.52 ± 0.39% 93.97 ± 0.55% 92.88 ± 0.57%

PRODEN 93.85 ± 0.60% 93.36 ± 0.53% 92.95 ± 0.37% 90.98 ± 0.28%
LWS 91.33 ± 0.08% 90.17 ± 0.24% 65.54 ± 1.64% 44.73 ± 1.43%
RC 94.84 ± 0.38% 94.64 ± 0.07% 93.11 ± 0.03% 86.11 ± 2.85%
CC 94.65 ± 0.27% 94.31 ± 0.20% 92.48 ± 0.33% 89.78 ± 0.35%

CIFAR-100-H

Supervised 82.31 ± 0.06%
PaPi (ours) 79.54 ± 0.13% 79.38 ± 0.19% 78.75 ± 0.17% 76.25 ± 0.24%

DPLL 75.71 ± 0.12% 74.55 ± 0.09% 73.98 ± 0.12% 71.21 ± 0.18%
PiCO 73.81 ± 0.13% 72.45 ± 0.44% 72.03 ± 0.19% 68.71 ± 1.20%

PRODEN 73.24 ± 0.19% 72.21 ± 0.97% 70.11 ± 0.14% 67.25 ± 0.88%
LWS 64.77 ± 1.45% 44.25 ± 0.68% 40.23 ± 1.27% 33.21 ± 1.22%
RC 72.31 ± 0.16% 71.78 ± 0.12% 69.88 ± 0.24% 52.14 ± 1.22%
CC 72.57 ± 0.88% 71.33 ± 0.90% 70.22 ± 0.87% 65.22 ± 0.89%

Table 1. Classification accuracy (mean ± std) on Fashion-MNIST, SVHN, CIFAR-10 and CIFAR-100-H with uniform partial labels under
different ambiguity levels. The best accuracy is highlighted in bold.

Label disambiguation. As mentioned earlier, we build
the connection between the highly effective representation
space and the label disambiguation based on the weight-
shared encoder. For multi-class classification, we adopt
cross-entropy loss as the classification loss term with pi be-
ing the learning target. The per-sample classification loss
term is defined as:

Li
cla = −

K∑
j=1

pij · log rij . (8)

Model updating. Putting it all together, the overall train-
ing objective for each sample is to minimize a weighted sum

of all loss terms:

Li = Li
cla + φ(t) · Li

ali, (9)

where we employ a dynamic balancing function w.r.t. the
epoch number t. We update the model by stochastic gra-
dient descent without back-propagating towards the dashed
arrow in Fig. 3. The pseudo-code is shown in Algorithm 1.

4. Experiments
4.1. Setup

Datasets. We adopt four widely used benchmark datasets
including Fashion-MNIST [30], SVHN [17], CIFAR-10
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Dataset Method q = 0.01 q = 0.05 q = 0.1 q = 0.2

CIFAR-100

Supervised 82.31 ± 0.06%
PaPi (ours) 82.23 ± 0.27% 81.60 ± 0.18% 81.65 ± 0.27% 79.49 ± 0.22%

DPLL 79.74 ± 0.07% 78.97 ± 0.13% 78.51 ± 0.24% 75.77 ± 0.06%
PiCO 73.78 ± 0.15% 72.78 ± 0.38% 71.55 ± 0.31% 48.76 ± 1.19%

PRODEN 73.20 ± 0.18% 72.13 ± 1.10% 71.88 ± 0.32% 52.10 ± 0.67%
LWS 64.55 ± 1.98% 50.19 ± 0.34% 44.93 ± 1.09% 37.97 ± 1.42%
RC 75.36 ± 0.06% 74.44 ± 0.31% 73.79 ± 0.29% 64.74 ± 0.82%
CC 76.16 ± 0.32% 75.04 ± 0.10% 73.56 ± 0.27% 71.43 ± 0.32%

Mini-Imagenet

Supervised 74.45 ± 0.18%
PaPi (ours) 72.43 ± 0.02% 72.08 ± 0.12% 71.54 ± 0.34% 67.81 ± 0.36%

DPLL 72.20 ± 0.01% 71.45 ± 0.25% 70.89 ± 0.28% 61.19 ± 0.73%
PiCO 67.24 ± 1.73% 66.44 ± 1.41% 64.00 ± 1.62% 43.46 ± 1.87%

PRODEN 65.15 ± 0.80% 61.70 ± 0.68% 58.28 ± 0.88% 37.04 ± 0.72%
LWS 65.85 ± 0.51% 59.39 ± 0.90% 54.12 ± 0.25% 21.62 ± 0.62%
RC 64.60 ± 0.55% 59.25 ± 0.70% 51.11 ± 0.11% 22.70 ± 1.12%
CC 64.74 ± 0.44% 58.92 ± 1.06% 49.23 ± 0.90% 20.73 ± 0.61%

Table 2. Classification accuracy (mean ± std) on CIFAR-100 and Mini-Imagenet with uniform partial labels under different ambiguity
levels. The best accuracy is highlighted in bold.

and CIFAR-100 [10]. We manually corrupt these datasets
into partially labeled versions by uniform [24] and instance-
dependent [33] generation process. We further investigate
PaPi on fine-grained image classification dataset CIFAR-
100-H [24] and few-shot image classification dataset Mini-
Imagenet [21]. We set q ∈ {0.1, 0.3, 0.5, 0.7} for Fashion-
MNIST, SVHN, CIFAR-10 and CIFAR-100-H, set q ∈
{0.01, 0.05, 0.1, 0.2} for CIFAR-100 and Mini-Imagenet.

Baselines. We compare PaPi against 7 state-of-the-art
PLL methods: (1) DPLL [27] performs supervised learn-
ing on non-candidate labels and employs consistency regu-
larization on candidate labels. (2) PiCO [24] identifies the
true label by using contrastively learned representations. (3)
VALEN [33] iteratively recovers the latent label distribution
by adopting the variational inference. (4) PRODEN [15]
accomplishes the update of model and the identification of
true labels in a seamless manner. (5) LWS [26] considers
the trade-off between losses on candidate labels and non-
candidate labels. (6) RC [4] utilizes the importance re-
weighting strategy. (7) CC [4] employs a transition matrix
to form an empirical risk estimator.

Implementation. For all datasets, we use an 18-layer
ResNet following [7, 24] as the encoder f(·). We instan-
tiate g(·) as a 2-layer MLP with one hidden layer (as well
as ReLU activation). The classifier h(·) is a single linear
layer, which is also used for inference. We present results
based on three independent runs for all methods. Source
code is available at https://github.com/AlphaXia/PaPi.

4.2. Main Results

PaPi achieves sota results. We present results on
Fashion-MNIST, SVHN and CIFAR-10 in Table 1. Obvi-
ously, we can observe that PaPi significantly outperforms
all baselines on all benchmark datasets, especially under
high ambiguity levels. Specifically, PaPi outperforms cur-
rent state-of-the-art method by 0.96% and 2.50% respec-
tively on SVHN and CIFAR-10 when q is set to 0.7. More
importantly, PaPi achieves comparable results against su-
pervised learning model, showing that label disambigua-
tion is satisfactorily completed in PaPi. For example, PaPi
suffers tiny performance degradation (lower than 1%) com-
pared with supervised learning model in many cases. The
performance degradation of PaPi is lower than 3% com-
pared with supervised learning model even under q = 0.7,
while most baselines demonstrate a significant performance
drop. In Table 2, we also observe that PaPi consistently out-
performs all baselines on CIFAR-100 and the superiority is
more substantial than that on the dataset with a small label
space. For example, PaPi outperforms the current state-of-
the-art method by 3.14% and 3.72% respectively when q
is set to 0.1 and 0.2.

In a more practical and challenge PLL setting where
the partial labels are generated in an instance-dependent
fashion, PaPi also outperforms the current state-of-the-art
method by a large margin. As presented in Table 3, PaPi
outperforms current state-of-the-art method by 4.40% on
CIFAR-10 and 4.57% on CIFAR-100, which fully demon-
strates the effectiveness of PaPi when facing more practical
instance-dependent ambiguity.
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(a) CIFAR-10 (q = 0.5)
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(b) CIFAR-10 (q = 0.7)
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(c) CIFAR-100 (q = 0.1)
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(d) CIFAR-100 (q = 0.2)
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(e) CIFAR-10 (q = 0.5)
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(f) CIFAR-10 (q = 0.7)
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(g) CIFAR-100 (q = 0.1)
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(h) CIFAR-100 (q = 0.2)

Figure 4. Visualizations of the effectiveness of learned representation. (a)-(d): Intra-class similarity and inter-class similarity on CIFAR-10
(q = 0.5, 0.7) and CIFAR-100 (q = 0.1, 0.2). (e)-(h): The red lines indicate the number of samples that were correctly classified by the
linear classifier and incorrectly classified by the prototypical classifier per mini-batch, and the green lines are the opposite.

Method Fashion-MNIST SVHN CIFAR-10 CIFAR-100

PaPi (ours) 93.84 ± 0.07% 97.74 ± 0.05% 95.13 ± 0.07% 63.70 ± 0.19%
DPLL 92.72 ± 0.14% 92.11 ± 0.88% 90.73 ± 0.11% 33.14 ± 1.74%
PiCO 87.86 ± 0.60% 91.18 ± 1.10% 90.50 ± 0.17% 59.13 ± 0.31%

VALEN 88.89 ± 0.13% 94.66 ± 0.17% 90.16 ± 0.52% 29.25 ± 0.14%
PRODEN 91.52 ± 0.24% 95.78 ± 0.46% 89.10 ± 0.44% 31.25 ± 0.20%

LWS 71.68 ± 3.89% 54.49 ± 7.21% 48.67 ± 7.68% 25.14 ± 2.18%
RC 91.42 ± 0.30% 94.85 ± 0.26% 88.66 ± 0.37% 38.25 ± 0.79%
CC 91.43 ± 0.76% 95.08 ± 0.24% 88.33 ± 0.75% 43.30 ± 1.90%

Table 3. Classification accuracy (mean ± std) on Fashion-MNIST, SVHN, CIFAR-10 and CIFAR-100 with instance-dependent partial
labels. The best accuracy is highlighted in bold.

From the above experimental results, we show that PaPi
can effectively handle both uniform and instance-dependent
PLL setting. Besides, we investigate the performance of
PaPi and all baselines on CIFAR-100-H and Mini-Imagenet,
which are less explored in previous literature. From Table 1
and Table 2, we observe that PaPi still outperforms all base-
lines significantly. The whole comparison results empha-
size the superiority of our framework.

PaPi learns effective representations. We validate the
effectiveness of learned representation by calculating the
intra-class and inter-class similarity. From Fig. 4a to
Fig. 4d, we can observe that PaPi produces well-separated
clusters and more distinguishable representations. More-
over, we justify our correct disambiguation guidance direc-
tion. From Fig. 4e to Fig. 4h, we find that the linear classi-

fier always shows higher accuracy than the prototypical one
and the linear classifier always has something new to teach
the prototypical one until convergence.

4.3. Ablation and Analysis

The effectiveness of prototypical alignment term. We
explore the effectiveness of our proposed prototypical align-
ment. Specifically, we compare PaPi with several variants:
(1) Variant 1 which removes the mixup augmentation com-
pared with PaPi; (2) Variant 2 which removes the proto-
typical alignment loss compared with PaPi. From Table 4,
we observe that PaPi outperforms Variant 1 (e.g., +1.47%
on CIFAR-100 (q = 0.2)), which verifies the effectiveness
of mixup augmentation. We also observe that PaPi outper-
forms Variant 2 (e.g., +7.19% on CIFAR-100 (q = 0.2)),
which confirms the importance of prototypical alignment
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(a) CIFAR-10 (q = 0.5)
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(b) CIFAR-10 (q = 0.7)
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(c) CIFAR-100 (q = 0.1)
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(d) CIFAR-100 (q = 0.2)

Figure 5. Classification accuracy calculated with the learned prototypes on CIFAR-10 (q = 0.5, 0.7) and CIFAR-100 (q = 0.1, 0.2).

Method CIFAR-10 CIFAR-100
q = 0.5 q = 0.7 q = 0.1 q = 0.2

PaPi (ours) 96.90 ± 0.09% 96.58 ± 0.07% 81.65 ± 0.27% 79.49 ± 0.22%
Variant 1 96.42 ± 0.11% 95.82 ± 0.12% 79.82 ± 0.09% 78.02 ± 0.05%
Variant 2 94.39 ± 0.10% 92.26 ± 0.12% 77.48 ± 0.07% 72.30 ± 0.26%

PiCO 93.97 ± 0.55% 92.88 ± 0.57% 71.55 ± 0.31% 48.76 ± 1.19%

Table 4. Classification accuracy (mean ± std) of different degenerated methods on CIFAR-10 (q = 0.5, 0.7) and CIFAR-100 (q = 0.1, 0.2).

Data augmentation CIFAR-10 CIFAR-100
compositions q = 0.5 q = 0.1

PaPi (S+W) 96.90 ± 0.09% 81.65 ± 0.27%
PaPi (2×S) 96.91 ± 0.05% 80.96 ± 0.08%
PaPi (2×W) 96.60 ± 0.03% 79.35 ± 0.14%

DPLL (2S+W) 95.31 ± 0.11% 78.51 ± 0.24%
DPLL (3×S) 95.67 ± 0.06% 78.41 ± 0.50%
DPLL (3×W) 93.76 ± 0.21% 75.23 ± 0.24%

Table 5. Accuracy (mean ± std) under different data augmentation
compositions on CIFAR-10 (q = 0.5) and CIFAR-100 (q = 0.1).

for identifying the true label. Besides, we find that even
Variant 2 achieves comparable results against the current
state-of-the-art method, which validates the importance of
self-teaching fashion.

The performance of learned prototypical classifier. In
Fig. 5, we report the classification accuracy calculated with
the learned prototypes. We can observe that PaPi achieves
better performance especially facing high ambiguity levels,
which demonstrates the effectiveness of our learned proto-
typical classifier. For example, PaPi outperforms PiCO by
6.24% and 40.29% respectively on CIFAR-10 (q = 0.7)
and CIFAR-100 (q = 0.2).

The impact of data augmentation compositions. In our
main experiments, we adopt one weak and one strong aug-
mentation. As shown in Table 5, we compare the accuracy

when equipped with different data augmentation composi-
tions, where S means strong augmentation and W means
weak augmentation. We observe that the combination of
strong and weak augmentation achieves the best perfor-
mance. Similarly, we evaluate DPLL [27] under different
compositions. When equipped with two weak augmenta-
tions, PaPi suffers less performance drop compared with
DPLL, which demonstrates the competitiveness of PaPi.

5. Conclusion

In this paper, we proposed a simple PLL framework
termed PaPi which explicitly contrasts the prototypical sim-
ilarity with the visual similarity between categories, such
that PaPi is remarkable for improving the class-level dis-
crimination of learned representation. Extensive experi-
mental results under multiple PLL settings demonstrated
PaPi established new state-of-the-art performance espe-
cially when facing high ambiguity levels and instance-
dependent ambiguity.
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Buchatskaya, C. Doersch, B. Ávila Pires, Z. Guo, M. Ghesh-
laghi Azar, B. Piot, K. Kavukcuoglu, R. Munos, and M.
Valko. Bootstrap your own latent - a new approach to
self-supervised learning. Advances in Neural Information
Processing Systems 33 (NeurIPS’20), pages 21271–21284,
2020. 3

[6] T. Han, J. Gao, Y. Yuan, and Q. Wang. Unsupervised se-
mantic aggregation and deformable template matching for
semi-supervised learning. In Advances in Neural Informa-
tion Processing Systems 33 (NeurIPS’20), 2020. 3

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of 29th IEEE
conference on Computer Vision and Pattern Recognition
(CVPR’16), pages 770–778, 2016. 6
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