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About this talk

 Fully supervised deep learning from big data is successful

 Nevertheless, massive labeled data is not always available

• Medicine, manufacturing, disaster, infrastructure …

 Achieving high accuracy with low labeling costs is always
a big challenge (and is our ultimate goal)
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About the title

 There are various definitions of weakly-supervised learning

 Here, we mean (binary/multi-class) classification, such that

1. The focus is still inductive learning but not transductive

2. The performance measure is still the classification error

3. Not all training data are equipped with (ordinary) labels

 Two types of weakly-supervised learning

• Semi-supervised learning (Chapelle+, Semi-Supervised Learning, 2006)

where we have a small set of fully labeled training data

• Other learning problems where no such set is available
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Semi-supervised learning

 Most popular form of learning objectives to be minimized:

Empirical risk (labeled data) + Regularization (unlabeled data)

• Empirical risk is defined exactly same as in supervised learning

• Regularization is based on the local smoothness or robustness
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Explicit regularization in
objective function

Manifold regularization
(Belkin+, JMLR 2006)

Virtual adversarial training
(Miyato+, ICLR’16)

Implicit regularization in
training algorithm

Temporal ensembling
(Laine & Aila, ICLR’17)

Mean teacher
(Tarvainen & Valpola, NIPS’17)



Other weakly-supervised learning problems

 Characteristic of labeled data for training

 Hence, we need to rewrite the true risk, if we want to follow ERM

 Fundamental questions:

1. How to design unbiased risk estimators?

2. When deep learning is involved, is this still the right way to go?
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Question 1

How to design unbiased risk estimators?
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Problem settings in a nutshell
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: positive data : negative data : unlabeled data

PN learning
(i.e., supervised learning)

PU learningPNU learning
(i.e., semi-supervised learning)

P & N data are
available for training

P & U data are
available for training

P, N & U data are
available for training



Notation
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Random variable Output 𝑌 ∈ ±1Input 𝑋 ∈ ℝ𝑑

Dataset 𝒳u = 𝑥𝑖
u

𝑖=1
𝑛u ~

i.i.d.
𝑝 𝑥𝒳p = 𝑥𝑖

p

𝑖=1

𝑛p
~

i.i.d.
𝑝p 𝑥 𝒳n = 𝑥𝑖

n
𝑖=1
𝑛n ~

i.i.d.
𝑝n 𝑥

Expectation 𝔼n ⋅ = 𝔼𝑋∼𝑝n
⋅𝔼p ⋅ = 𝔼𝑋∼𝑝p

⋅

Class-prior probability 𝜋p = 𝑝 𝑌 = +1
Assumed known; can be estimated Ramaswamy+ (ICML’16); Jain+ (NIPS’16); du Plessis+ (MLJ 2017)

Density
Underlying joint density 𝑝(𝑥, 𝑦)

𝑝n 𝑥 = 𝑝 𝑥 𝑌 = −1𝑝(𝑥) 𝑝p 𝑥 = 𝑝 𝑥 𝑌 = +1



Empirical risk estimator in PN learning

 Let 𝑔 be a decision function & ℓ be a loss function

 The risk of 𝑔 is

𝑅 𝑔 = 𝔼 𝑋,𝑌 ∼𝑝(𝑥,𝑦) ℓ 𝑌𝑔 𝑋

= 𝜋p𝔼p ℓ 𝑔 𝑋 + 𝜋n𝔼n ℓ −𝑔 𝑋

where 𝜋n = 1 − 𝜋p

 The risk can be approximated directly by
 𝑅pn 𝑔 =

𝜋p

𝑛p
 𝑥∈𝒳p

ℓ 𝑔 𝑥 +
𝜋n

𝑛n
 𝑥∈𝒳n

ℓ −𝑔 𝑥

 This doesn’t work for PU learning!
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Empirical risk estimator in PU learning (du Plessis+, ICML’15)

 Key observations

• 𝜋n𝑝n 𝑥 = 𝑝 𝑥 − 𝜋p𝑝p 𝑥

• 𝜋n𝔼n ℓ −𝑔 𝑋 = 𝔼𝑋 ℓ −𝑔 𝑋 − 𝜋p𝔼p ℓ −𝑔 𝑋

 Thus the risk can be expressed as

𝑅 𝑔 = 𝜋p𝔼p ℓ 𝑔 𝑋 − ℓ −𝑔 𝑋 + 𝔼𝑋 ℓ −𝑔 𝑋

 This can be approximated indirectly by

 𝑅pu 𝑔 =
𝜋p

𝑛p
 𝑥∈𝒳p

ℓ 𝑔 𝑥 − ℓ −𝑔 𝑥 +
1

𝑛u
 𝑥∈𝒳u

ℓ −𝑔 𝑥

 Simple in retrospect!
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Non-convex special case (du Plessis+, NIPS’14)

 If ℓ 𝑡 + ℓ −𝑡 = 1

𝑅 𝑔 = 2𝜋p𝔼p ℓ 𝑔 𝑋 + 𝔼𝑋 ℓ −𝑔 𝑋 − 𝜋p

• Non-convex in 𝑔

 Examples
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Zero-one loss

(1 − sign(𝑡))/2

Fit evaluation & validation

(scaled) Ramp loss

max{0,min{1, (1 − 𝑡)/2}}

Fit CCCP solver

Sigmoid loss

1/(1 + exp(𝑡))

Fit SGD solver



Convex special case (du Plessis+, ICML’15)

 If ℓ 𝑡 − ℓ −𝑡 = −𝑡 (Natarajan+, NIPS’13; Patrini+, ICML’16)

𝑅 𝑔 = 𝜋p𝔼p −𝑔 𝑋 + 𝔼𝑋 ℓ −𝑔 𝑋

• Convex in 𝑔, and convex in 𝜃 if 𝑔(𝑥; 𝜃) is linear in 𝜃

 Examples
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(scaled) Squared loss

𝑡 − 1 2/4

Analytic solution

Logistic loss

ln 1 + exp −𝑡
Fit SGD solver

Double hinge loss

max{0, (1 − 𝑡)/2, −𝑡}

Fit QP solver



Question 2

When deep learning is involved,
is this still the right way to go?
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Thought experiment

 Assume 𝑔 is fairly flexible (such as deep NNs) and ∀𝑔, 𝑅 𝑔 > 0

 Consider when deep learning meets weakly-supervised learning:

  𝑅pu 𝑔 < 0 during training must be overfitting since ∀𝑔, 𝑅 𝑔 > 0
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Case 1. Validation

Fix 𝑔

Sample 𝒳p and 𝒳u

 𝑅pu 𝑔 > 0
with high probability

Case 2. Initialization

Fix 𝒳p and 𝒳u

Sample 𝑔

 𝑅pu 𝑔 > 0
with high probability

Case 3. Training

Fix 𝒳p and 𝒳u

Minimize  𝑅pu 𝑔

 𝑅pu 𝑔 < 0
sooner or later



Real experiment

  𝑅pu 𝑔 is nice for training linear-in-parameter models

 It cannot be used for training even the shallowest MLP
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Epoch (of SGD)

R
is

k

PU test

PN test

PU train

PN train

Overfitting

Emp. risk < 0

On MNIST  P = {even digits}
N = {odd digits}

 𝜋p = 0.49

𝑛p = 100

𝑛n = 50
𝑛u = 59,900

 We can observe
P is too limited
so U cannot help



Non-negative risk estimator (Kiryo+, NIPS’17)

 Rescue with neither changing model nor labeling more data

 Recall 𝜋n𝔼n ℓ −𝑔 𝑋 = 𝔼𝑋 ℓ −𝑔 𝑋 − 𝜋p𝔼p ℓ −𝑔 𝑋

• Approximate left-hand-side   𝑅pn 𝑔 ≥ 0

• Approximate right-hand-side   𝑅pu 𝑔 ≱ 0

 Force it to be non-negative!
 𝑅pu 𝑔 =

𝜋p

𝑛p
 𝑥∈𝒳p

ℓ 𝑔 𝑥

+max 0,
1

𝑛u
 𝑥∈𝒳u

ℓ −𝑔 𝑥 −
𝜋p

𝑛p
 𝑥∈𝒳p

ℓ −𝑔 𝑥

 Minimizing  𝑅pu 𝑔 is no longer embarrassingly parallel
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Large-scale learning algorithm (Kiryo+, NIPS’17)

 Safe to minimize  𝑅pu 𝑔 averaged over mini-batches

max 0,
1

𝑛u
 𝑥∈𝒳u

ℓ −𝑔 𝑥 −
𝜋p

𝑛p
 𝑥∈𝒳p

ℓ −𝑔 𝑥

≤
1

𝑁
 𝑖=1

𝑁 max 0,
1

𝑛u/𝑁
 

𝑥∈𝒳u
𝑖 ℓ −𝑔 𝑥 −

𝜋p

𝑛p/𝑁
 

𝑥∈𝒳p
𝑖 ℓ −𝑔 𝑥

 Given 𝑖-th mini-batch (𝒳p
𝑖 , 𝒳u

𝑖)

• Gradient decent according to  𝑅pu if 𝛥 ≥ 0  Fit this mini-batch

• Gradient ascent according to 𝛥 otherwise  Correct overfitting

 Updates are done by external SGD-like algorithms

17

Denote by 𝛥



Experiments on MNIST
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 P = {even digits, i.e.,
0, 2, 4, 6 & 8}

N = {odd digits, i.e.,
1, 3, 5, 7 & 9}

 𝜋p = 0.49

𝑛p = 1,000

𝑛n = 𝜋n/2𝜋p
2
𝑛p

𝑛u = 60,000

 Model: 6-layer MLP with
ReLU (Nair & Hinton, ICML’10)

& Batch Normalization
(Ioffe & Szegedy, ICML’15)



Experiments on CIFAR-10
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 P = {airplane, automobile,
ship & truck}

N = {bird, cat, deer, dog,
frog & horse}

 𝜋p = 0.40

𝑛p = 1,000

𝑛n = 𝜋n/2𝜋p
2
𝑛p

𝑛u = 50,000

 Model: 13-layer CNN
which is known as
All Convolutional Net
(Springenberg+, ICLR’15)



When deep learning meets
weakly-supervised learning

PU classification is not a special case!
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Problems that suffer (similarly to PU classification)
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PU learning while R of ERM is replaced with some other criteria

AUC maximization
(Sakai+, MLJ to appear)

SMI estimation & maximization (Sakai+, arXiv 2018)

for dimensionality reduction & independence test

Learning binary classifiers from two datasets (neither PN nor PU)

Two U having different class priors
(du Plessis+, TAAI’13; Menon+, ICML’15)

Pairwise similarity dataset & U
(Bao+, arXiv 2018)

Learning multi-class classifiers from extremely noisy labels

A complementary label specifies which class 𝑥𝑖 is not from (Ishida+, NIPS’17)


