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What is this talk about?

 Fully supervised deep learning from big data is successful

 Nevertheless, massive labeled data is not always available

• Medicine, manufacturing, disaster, infrastructure …

 Achieving high accuracy with low labeling costs is always
a big challenge (and is our ultimate goal)
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Overview

 Focus on binary classification – the most studied learning problem

 In PU learning, a binary classifier is trained from only P & U data

 Unbiased PU learning

• State-of-the-art approach to training linear-in-parameter models

• Unbiased empirical risk estimators are minimized

 Non-negative PU learning

• State-of-the-art approach to training deep models

• Non-negative empirical risk estimators are minimized

 PNU learning

• Convex combinations of the objectives of PU & PN learning
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Outline

 Introduction

 Unbiased PU Learning (du Plessis, Niu & Sugiyama, NIPS’14 & ICML’15)

 Non-negative PU Learning (Kiryo, Niu, du Plessis & Sugiyama, NIPS’17)

(for oral presentation; there are 40 orals/678 acceptance/3240 submissions)

 PNU Learning (Sakai, du Plessis, Niu & Sugiyama, ICML’17)

 Theoretical Analyses (Niu, du Plessis, Sakai, Ma & Sugiyama, NIPS’16)
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Problem settings in a nutshell

5

: positive data : negative data : unlabeled data

PN learning
(i.e., supervised learning)

PU learningPNU learning
(i.e., semi-supervised learning)

P & N data are
available for training

P & U data are
available for training

P, N & U data are
available for training



Motivation of PU learning

 PN learning (whether deep or not) is data demanding

 Then, is PNU learning the most natural choice?

• Certainly, if the two classes are symmetric
Which is P & which is N does not matter

• Not really, if there is intrinsic difference in them
Which is P & which is N matters

 PU learning is preferred due to the following reasons

I. N data are too expensive

II. N data are too diverse

III. “N data” are impure
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Case I: N data are too expensive 

 Some data-collecting activity is prohibited by law

• Suppose I am a market researcher at Apple

• Let Samsung be the imaginary enemy

• Plan A: Hack the data center of Samsung

• Plan B: Send corporate spies to Samsung

 Some activity is costly & risky

• Some clinical trials involve healthy subjects with no pre-existing 
medical conditions  Extreme financial incentives

• While others pertain to patients with specific health conditions
who are willing to try an experimental treatment
(https://en.wikipedia.org/wiki/Clinical_trial)
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Case II: N data are too diverse

 In the first running example

• Android is neither the only competitor

• Nor is Samsung the only Android vendor

 In the second running example

• Too difficult to sample healthy subjects without selection bias
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Case III: “N data” are impure

 Wait, and rethink the definition of N

 For the sake of smartphone advertising

• A customer is N = S/he hates iPhone
and would never buy it in the whole life

• N = {non-potential user} ∈ {not existing user} = U

 For the purpose of drug testing

• Many diseases are due to chromosomal abnormality

• P = {specific genetic disorder} ∋ {specific medical condition}

• N = {not possess this disorder} ∈ {not observe this condition} = U
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Previous work in PU learning

 Binary classification (applied to retrieval & novelty/outlier detection)

• Statistical query model Denis (ALT’98); De Comité+ (ALT’99); Letouzey+ (ALT’00)

• Linear(-in-parameter) model
Liu+ (ICML’02); Li & Liu (IJCAI’03); Lee & Liu (ICML’03); Liu+ (ICDM’03);

Elkan & Noto (KDD’08); The first that might be unbiased
Ward+ (Biometrics 2009); Scott & Blanchard (AISTATS’09); Blanchard+ (JMLR 2010);

du Plessis+ (NIPS’14) The first that must be unbiased

 Other applications

• Matrix completion Hsieh+ (ICML’15)

• Sequential data Li+ (SDM’09); Nguyen+ (IJCAI’11)
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Empirical risk minimization (Vapnik, Statistical Learning Theory, 1998)

 A “cookbook” procedure of ERM

1. Choose a loss, so that the (expected) learning objective
(which is known as the risk) can be defined

2. Choose a model, so that the risk can be minimized over
this model family (rather than all measurable functions)

3. Approximate the risk by an empirical risk estimator

4. Minimize the empirical risk by an optimization algorithm

 Nice to have independent learning obj., model & opt. alg.
Arguably a key reason for the great success of deep learning

 3. – Straightforward for PN; non-trivial for PU
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Notation

 𝑋 ∈ ℝ𝑑 ,𝑌 ∈ ±1 : Input & output RVs

 𝑝(𝑥, 𝑦): Underlying joint density

 𝑝p 𝑥 = 𝑝 𝑥 𝑌 = +1 : P marginal 𝑝(𝑥): U marginal

𝑝n 𝑥 = 𝑝 𝑥 𝑌 = −1 : N marginal

 𝜋p = 𝑝(𝑌 = +1): Class-prior probability – Assumed known;

can be estimated Ramaswamy+ (ICML’16); Jain+ (NIPS’16); du Plessis+ (MLJ 2017)

 𝔼p ⋅ = 𝔼𝑋∼𝑝p ⋅ ,𝔼n ⋅ = 𝔼𝑋∼𝑝n ⋅ : Expectation over P/N marginal

 𝒳p = 𝑥𝑖
p

𝑖=1

𝑛p
~
i.i.d.

𝑝p 𝑥 : P data 𝒳u = 𝑥𝑖
u

𝑖=1
𝑛u ~

i.i.d.
𝑝 𝑥 : U data

𝒳n = 𝑥𝑖
n

𝑖=1
𝑛n ~

i.i.d.
𝑝n 𝑥 : N data

13



Empirical risk estimator in PN learning

 Let 𝑔 be a decision function & ℓ be a loss function

 The risk of 𝑔 is

𝑅 𝑔 = 𝔼 𝑋,𝑌 ∼𝑝(𝑥,𝑦) ℓ 𝑌𝑔 𝑋

= 𝜋p𝔼p ℓ 𝑔 𝑋 + 𝜋n𝔼n ℓ −𝑔 𝑋

where 𝜋n = 1 − 𝜋p

 The risk can be approximated directly by
 𝑅pn 𝑔 =

𝜋p

𝑛p
 𝑥∈𝒳p

ℓ 𝑔 𝑥 +
𝜋n

𝑛n
 𝑥∈𝒳n

ℓ −𝑔 𝑥

 This doesn’t work for PU learning!
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Empirical risk estimator in PU learning (du Plessis+, ICML’15)

 Key observations

• 𝜋n𝑝n 𝑥 = 𝑝 𝑥 − 𝜋p𝑝p 𝑥

• 𝜋n𝔼n ℓ −𝑔 𝑋 = 𝔼𝑋 ℓ −𝑔 𝑋 − 𝜋p𝔼p ℓ −𝑔 𝑋

 Thus the risk can be expressed as

𝑅 𝑔 = 𝜋p𝔼p ℓ 𝑔 𝑋 − ℓ −𝑔 𝑋 + 𝔼𝑋 ℓ −𝑔 𝑋

 This can be approximated indirectly by

 𝑅pu 𝑔 =
𝜋p

𝑛p
 𝑥∈𝒳p

ℓ 𝑔 𝑥 − ℓ −𝑔 𝑥 +
1

𝑛u
 𝑥∈𝒳u

ℓ −𝑔 𝑥

 Simple in retrospect!
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Non-convex special case (du Plessis+, NIPS’14)

 If ℓ 𝑡 + ℓ −𝑡 = 1

𝑅 𝑔 = 2𝜋p𝔼p ℓ 𝑔 𝑋 + 𝔼𝑋 ℓ −𝑔 𝑋 − 𝜋p

• Non-convex in 𝑔

 Examples
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Zero-one loss

(1 − sign(𝑡))/2

Fit evaluation & validation

(scaled) Ramp loss

max{0,min{1, (1 − 𝑡)/2}}

Fit CCCP solver

Sigmoid loss

1/(1 + exp(𝑡))

Fit SGD solver



Convex special case (du Plessis+, ICML’15)

 If ℓ 𝑡 − ℓ −𝑡 = −𝑡 (Natarajan+, NIPS’13; Patrini+, ICML’16)

𝑅 𝑔 = 𝜋p𝔼p −𝑔 𝑋 + 𝔼𝑋 ℓ −𝑔 𝑋

• Convex in 𝑔, and convex in 𝜃 if 𝑔(𝑥; 𝜃) is linear in 𝜃

 Examples
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(scaled) Squared loss

𝑡 − 1 2/4

Analytic solution

Logistic loss

ln 1 + exp −𝑡
Fit SGD solver

Double hinge loss

max{0, (1 − 𝑡)/2, −𝑡}

Fit QP solver



Remarks

  𝑅pu 𝑔 is unbiased & consistent, similarly to  𝑅pn 𝑔

• Why is unbiasedness important? Easy to be consistent

 Biased SVM (Liu+, ICDM’03) – best method prior to Elkan & Noto (KDD’08)
1

2
𝑤 2 + 𝐶p 𝑥∈𝒳p

ℓH 𝑤 ⋅ 𝑥 + 𝑏 + 𝐶u  𝑥∈𝒳u
ℓH −𝑤 ⋅ 𝑥 − 𝑏

• Guess/search 𝐶p & 𝐶u

• No learning guarantee

 SMO solver speeding up double hinge loss (Sansone+, arXiv 2016)

Note that theoretical & experimental results omitted for simplicity
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Revisit ERM

2. Choose a model 𝒢

• Approximation error inf𝑔∈𝒢𝑅 𝑔 − inf𝑔𝑅 𝑔

Smaller for more flexible model

3. Approximate 𝑅(𝑔) by  𝑅(𝑔)

• Estimation error 𝑅  𝑔 − inf𝑔∈𝒢𝑅 𝑔   𝑔 = arg inf𝑔∈𝒢  𝑅 𝑔

Smaller for less flexible model, or bigger training data
Converge to zero, if learning is consistent

4. Minimize  𝑅(𝑔) by an optimization algorithm which returns  𝑔′

• Optimization error  𝑅  𝑔′ −  𝑅(  𝑔)
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Motivation

  𝑅pu 𝑔 is nice for training linear-in-parameter models

 However, it cannot be used for training deep networks 
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Epoch (of SGD)

R
is

k

PU test

PN test

PU train

PN train

Overfitting

Emp. risk < 0

On MNIST • P = {even digits}
N = {odd digits}

• 𝑛p = 100

𝑛n = 50
𝑛u = 59,900

• P too limited
U cannot help



Non-negative risk estimator (Kiryo+, NIPS’17)

 Rescue with neither changing model nor labeling more data

 Recall 𝜋n𝔼n ℓ −𝑔 𝑋 = 𝔼𝑋 ℓ −𝑔 𝑋 − 𝜋p𝔼p ℓ −𝑔 𝑋

• Approximate left-hand-side   𝑅pn 𝑔 ≥ 0

• Approximate right-hand-side   𝑅pu 𝑔 ≱ 0

 Force it to be non-negative!
 𝑅pu 𝑔 =

𝜋p

𝑛p
 𝑥∈𝒳p

ℓ 𝑔 𝑥

+max 0,
1

𝑛u
 𝑥∈𝒳u

ℓ −𝑔 𝑥 −
𝜋p

𝑛p
 𝑥∈𝒳p

ℓ −𝑔 𝑥

 Minimizing  𝑅pu 𝑔 is no longer embarrassingly parallel
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 Let 𝒳p
1, 𝒳u

1 , … , (𝒳p
𝑁 , 𝒳u

𝑁) be mini-batches

max 0,
1

𝑛u
 𝑥∈𝒳u

ℓ −𝑔 𝑥 −
𝜋p

𝑛p
 𝑥∈𝒳p

ℓ −𝑔 𝑥

= max 0,  𝑖=1
𝑁 1

𝑛u
 
𝑥∈𝒳u

𝑖 ℓ −𝑔 𝑥 −  𝑖=1
𝑁 𝜋p

𝑛p
 
𝑥∈𝒳p

𝑖 ℓ −𝑔 𝑥

≤
1

𝑁
 𝑖=1
𝑁 max 0,

1

𝑛u/𝑁
 
𝑥∈𝒳u

𝑖 ℓ −𝑔 𝑥 −
𝜋p

𝑛p/𝑁
 
𝑥∈𝒳p

𝑖 ℓ −𝑔 𝑥

 Safe to minimize  𝑅pu 𝑔 averaged over mini-batches

 You can choose whatever stochastic opt. alg. you like

• Adam (Kingma+, ICLR’15) or AdaGrad (Duchi+, JMLR 2011)

Large-scale learning algorithm (Kiryo+, NIPS’17)
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Experiments on MNIST
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 P = {even digits, i.e.,
0, 2, 4, 6 & 8}

N = {odd digits, i.e.,
1, 3, 5, 7 & 9}

 𝜋p = 0.49

𝑛p = 1,000

𝑛n = 𝜋n/2𝜋p
2
𝑛p

𝑛u = 60,000

 Model: 6-layer MLP with
ReLU (Nair & Hinton, ICML’10)

& BN (Ioffe & Szegedy, ICML’15)



Experiments on CIFAR10
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 P = {airplane, automobile,
ship & truck}

N = {bird, cat, deer, dog,
frog & horse}

 𝜋p = 0.40

𝑛p = 1,000

𝑛n = 𝜋n/2𝜋p
2
𝑛p

𝑛u = 50,000

 Model: 13-layer CNN –
All Convolutional Net
(Springenberg+, ICLR’15)



Remarks

  𝑅pu 𝑔 is not a shrinkage estimator

•  𝑅pu 𝑔 =  𝑅pu 𝑔 if  𝑅pu 𝑔 ≥ 0 Identical for simple models

•  𝑅pu 𝑔 >  𝑅pu 𝑔 if  𝑅pu 𝑔 < 0 Different for complex models

  𝑅pu 𝑔 is biased but still consistent; bias is in 𝒪 exp −
1

1/𝑛p+1/𝑛u

 Mean squared error is reduced for certain losses

 Learning is consistent; estimation error bound is in 𝒪𝑝
1

𝑛𝑝
+

1

𝑛u

for linear-in-parameter models
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Motivation

 SSL usually needs additional distributional assumptions

• Cluster (Chapelle+, NIPS’02), manifold (Belkin+, JMLR 2006) …

• U data are used in regularization
 They will bias the classifier (learned following ERM)

 Violated assumption  U data become harmful & hurt
(Cozman+, ICML’03; Sokolovska+, ICML’08; Li & Zhou, TPAMI 2015; Krijthe & Loog, PR 2017)

 PU learning has no additional distributional assumption

• U data are used in risk evaluation
 They will not bias the classifier
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Illustration

29

PNU learning = PN learning + PU learning

= + 

PNU learning = PN learning + NU learning

= + 



Unbiased risk estimators (Sakai+, ICML’17)

 Given 𝛾 ∈ 0,1 , PN+PU learning is to minimize
 𝑅pn,pu
𝛾

𝑔 = 1 − 𝛾  𝑅pn 𝑔 + 𝛾  𝑅pu 𝑔

 Analogously, PN+NU learning is to minimize
 𝑅pn,nu
𝛾

𝑔 = 1 − 𝛾  𝑅pn 𝑔 + 𝛾  𝑅nu 𝑔

where  𝑅nu 𝑔 =
𝜋n

𝑛n
 𝑥∈𝒳n

ℓ −𝑔 𝑥 − ℓ 𝑔 𝑥 +
1

𝑛u
 𝑥∈𝒳u

ℓ 𝑔 𝑥

 Given 𝜂 ∈ −1,1 , we define PNU learning as to minimize

 𝑅pnu
𝜂

𝑔 =  
 𝑅pn,pu
𝜂

𝑔 , if 𝜂 ≥ 0

 𝑅pn,nu
−𝜂

𝑔 , if 𝜂 < 0
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NU learning, if 𝜂 = −1
PN learning, if 𝜂 = 0
PU learning, if 𝜂 = +1



Why not PU+NU?

 Motivated by theoretical comparisons (Niu+, NIPS’16)

 PN learning can never be the worst among PN, PU & NU learning

• If 𝑛u is sufficiently large (compared with 𝑛p & 𝑛n)

 PN learning is the second best

• Otherwise  PN learning is the best

 PU+NU learning is not the best possible combination
PN+PU & PN+NU learning are the best combinations

Note that theoretical & experimental results omitted for simplicity
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To be short and intuitive

 Based on upper bounds on estimation errors

 Find simple conditions, such that

• PU learning is likely to outperform PN learning
if 𝜋p/ 𝑛p + 1/ 𝑛u < 𝜋n/ 𝑛n

• NU learning is likely to outperform PN learning
if 𝜋n/ 𝑛n + 1/ 𝑛u < 𝜋p/ 𝑛p

 Either PU or NU learning (depending on 𝜋p, 𝜋n, 𝑛p & 𝑛n)

given infinite U data will improve on PN learning
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Simplified estimation error bounds (Niu+, NIPS’16)

 Let 𝑔∗/  𝑔pn,  𝑔pu &  𝑔nu be true/empirical risk minimizers

 Assume Rademacher complexities (Mohri+, Foundations of ML, 2012)

of the function class 𝒢 (a.k.a. model family) are in 𝒪 1/ 𝑛

 Bounds below hold separately with probability at least 1 − 𝛿

𝑅  𝑔pn − 𝑅 𝑔∗ ≤ 𝐶(𝛿) ⋅ 𝜋p/ 𝑛p + 𝜋n/ 𝑛n

𝑅  𝑔pu − 𝑅 𝑔∗ ≤ 𝐶(𝛿) ⋅ 2𝜋p/ 𝑛p + 1/ 𝑛u

𝑅  𝑔nu − 𝑅 𝑔∗ ≤ 𝐶(𝛿) ⋅ 1/ 𝑛u + 2𝜋n/ 𝑛n
where 𝐶(𝛿) is a function of 𝛿

 Originally for du Plessis+ (NIPS’14) but can be extended to du Plessis+ (ICML’15)
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Finite-sample comparisons (Niu+, NIPS’16)

 Tighter PU bound than PN bound, if 𝛼pu,pn =
𝜋p/ 𝑛p+1/ 𝑛u

𝜋n/ 𝑛n
< 1

 Tighter NU bound than PN bound, if 𝛼nu,pn =
𝜋n/ 𝑛n+1/ 𝑛u

𝜋p/ 𝑛p
< 1

 𝛼pu,pn is monotonically decreasing in 𝑛p & 𝑛u

• More U data  PU improves

• More P data PN improves too, but PU improves more!

 Many other implications discussed as well

• When 𝑛p, 𝑛n & 𝑛u are proportional

• When 𝑛p/𝑛n ≈ 𝜋p/𝜋n is further imposed
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Asymptotic comparisons (Niu+, NIPS’16)

 In practice, we may find PU worse than PN and 𝛼pu,pn > 1

Give up PU? Collect more U data (in order to improve PU)?

 Assume 𝑛p, 𝑛n < ∞ & 𝑛u → ∞, or 𝒪 𝑛p = 𝒪 𝑛n < 𝒪 𝑛u

• 𝛼pu,pn
∗ & 𝛼nu,pn

∗ exist as the limits of 𝛼pu,pn & 𝛼nu,pn

 Then, 𝛼pu,pn
∗ ⋅ 𝛼nu,pn

∗ = 1

• Either 𝛼pu,pn
∗ < 1 Limit of PU will improve on that of PN

• Or       𝛼nu,pn
∗ < 1 Limit of NU will improve on that of PN

• Exception: 𝑛p/𝑛n → 𝜋p
2/𝜋n

2
 All 3 limits are equally good
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Take-home message

 Unbiased PU learning and simple models given small data

• Logistic loss or double hinge loss for convexity

 Non-negative PU learning and complex models given big data

• Sigmoid loss for a similar shape to zero-one loss

 When PU doesn’t work  Label some N to see whether PN works

• PN works and 𝜋p/ 𝑛p > 𝜋n/ 𝑛n Label more P (expensive)

or switch to NU/PNU if you want

• PN works and 𝜋p/ 𝑛p < 𝜋n/ 𝑛n Collect more U (cheap)

• PN doesn’t work as well  Find a more suitable model
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Beyond this talk …

 We are two-sample PU (Ward, Hastie, Barry, Elith & Leathwick, Biometrics 2009)

• Fairly different from one-sample PU (Elkan & Noto, KDD’08)

• According to Menon, Van Rooyen, Ong, Williamson (ICML’15)

∈ mutually contaminated learning (Scott, AISTATS’15)

∉ class-conditional noise learning (Natarajan, Dhillon, Ravikumar & Tewari, NIPS’13)

 Following work in PU learning

• Multi-label ranking (Kanehira & Harada, CVPR’16)  Fancy application

• AUC maximization (PU & SSL) (Sakai, Niu & Sugiyama, MLJ, to appear)

• Multi-instance binary classification (Bao, Sakai, Sato & Sugiyama, arXiv 2017)

• Multi-class classification (Konno, UTokyo bachelor thesis 2017)
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