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Abstract

In the presence of noisy labels, designing robust
loss functions is critical for securing the gener-
alization performance of deep neural networks.
Cross Entropy (CE) loss has been shown to be
not robust to noisy labels due to its unbounded-
ness. To alleviate this issue, existing works typ-
ically design specialized robust losses with the
symmetric condition, which usually lead to the
underfitting issue. In this paper, our key idea is to
induce a loss bound at the logit level, thus univer-
sally enhancing the noise robustness of existing
losses. Specifically, we propose logit clipping
(LogitClip), which clamps the norm of the logit
vector to ensure that it is upper bounded by a con-
stant. In this manner, CE loss equipped with our
LogitClip method is effectively bounded, mitigat-
ing the overfitting to examples with noisy labels.
Moreover, we present theoretical analyses to cer-
tify the noise-tolerant ability of LogitClip. Ex-
tensive experiments show that LogitClip not only
significantly improves the noise robustness of CE
loss, but also broadly enhances the generalization
performance of popular robust losses.

1. Introduction
The success of supervised learning relies heavily on a mas-
sive amount of data, where each training instance is labeled
by a human annotator. However, labels solicited from hu-
mans can often be subject to label noise. The issue of noisy
labels has been commonly observed in many real-world sce-
narios, such as crowdsourcing (Yan et al., 2014) and online
queries (Blum et al., 2003). As a result, models trained
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on such data containing noisy labels suffer from poor gen-
eralization performance (Arpit et al., 2017; Zhang et al.,
2016). This gives rise to the importance of noise-robust
learning, where the goal is to train a robust classifier in the
presence of noisy and erroneous labels. The learning task
thus provides stronger flexibility and practicality than the
standard supervised learning, where each training example
is provided with clean ground truth.

Despite the most popular loss in classification tasks, CE
loss has shown to be non-robust in the presence of label
noise (Ghosh et al., 2017; Zhang & Sabuncu, 2018), due
to its unboundedness. Concerningly, the loss could ap-
proach infinity when the observed noisy label mismatches
the model’s prediction. Consequently, the model would
attempt to counteract the large loss by overfitting the la-
bel noise, leading to poor generalization performance. To
bound the loss value, previous methods typically design
robust losses with principal constraint, e.g., symmetric con-
dition (Ghosh et al., 2017; Ma et al., 2020). Despite their
theoretical robustness, these specialized losses can cause
difficulty in optimization, leading to underfitting issues on
complex datasets (Zhang & Sabuncu, 2018; Zhou et al.,
2021). This motivates our method, which mitigates the un-
desirable influence of unbounded loss without modifying
the loss function.

In this paper, our key idea is to induce the loss bound at the
logit level, which universally enhances the noise robustness
of existing losses. Specifically, we propose logit clipping
(LogitClip), which clamps the norm of the logit vector to
ensure that it is upper bounded by a constant. Our method
can be interpreted as a constrained optimization with an in-
equality constraint placed on the logit vector. Theoretically,
we show that CE loss equipped with our LogitClip method
is always bounded. Consequently, the difference between
the risks caused by the derived hypotheses under noisy and
clean labels is always bounded. More importantly, the two
bounds (Theorem 2.2 and Theorem 2.3) depend on the logit
norm threshold, where a smaller threshold induces tighter
bounds. In this way, our theoretical analyses demonstrate
the noise-tolerant ability of LogitClip.

To verify the effectiveness of our method, we conduct
thorough empirical evaluations on both simulated and
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real-world noisy datasets, including CIFAR-10, CIFAR-
100 (Krizhevsky et al., 2009), and WebVision (Li et al.,
2017) datasets. The results demonstrate that logit clipping
can significantly improve the noise-robustness of CE loss,
under symmetric, asymmetric, instance-dependent, and real-
world label noise. For example, on CIFAR-10 with instance-
dependent label noise, LogitClip improves the test accuracy
of CE loss from 68.36% to 86.60% – a 18.24% of direct
improvement. More importantly, we show that LogitClip
can boost the performance of a wide range of popular ro-
bust loss functions, including MAE (Ghosh et al., 2017),
PHuber-CE (Menon et al., 2020), SCE (Wang et al., 2019),
GCE (Zhang & Sabuncu, 2018), Taylor-CE (Feng et al.,
2020), NCE (Ma et al., 2020), AEL, AUL (Zhou et al.,
2021), Cores (Cheng et al., 2021), and Active Passive losses
(Ma et al., 2020).

We summarize our contributions as follows:

1. We propose LogitClip – a simple and effective method
to enhance the noise robustness of existing losses. The
key idea is to clamp the norm of the logit vector to
bound the loss value, as shown in Proposition 2.1 and
Proposition 2.4.

2. We provide theoretical analyses in Theorem 2.2 and
Theorem 2.3 to certify the noise-tolerant ability of our
LogitClip, where a smaller threshold induces tighter
bounds.

3. We conduct extensive evaluation to show that Logit-
Clip can improve the robustness of CE and popular
robust losses across various types of label noise. We
empirically show that our method is model-agnostic
and also applicable in large-scale real-world scenarios.

4. We perform ablation studies that lead to improved un-
derstandings of our method. In particular, we contrast
with alternative methods (e.g., RELU6 (Howard et al.,
2017), Clipping-by-value) and demonstrate the advan-
tages of our method with Clipping-by-norm.

2. Motivation and Method
2.1. Preliminaries: The Unboundedness of CE loss

In this work, we consider the multi-class classification task
with K different classes. Let X ⊂ Rd be the input space
and Y = {1, . . . ,K} be the label space, we consider a
training dataset with N samples {xi, yi}Ni=1, where xi ∈ X
is the i-th instance sampled i.i.d. from an underlying data-
generating distribution P and yi ∈ Y is the observed (and
potentially noisy) label. A classifier is a function that maps
from the input space to the label space f : X → RK with
trainable parameter θ ∈ Rp.

Here, we consider composite losses, which are comprised
of a base loss function ϕ and an invertible link function
σ : R → [0, 1]. For example, the most commonly used
composite loss in multi-class classification is Softmax Cross
Entropy (CE) loss:

LCE (f(x;θ), y) = −
K∑
j=1

yj log(σ (zj))

= −
K∑
j=1

yj log

(
ezj∑K
k=1 e

zk

)
,

(1)

where zj = fj (x;θ) corresponds to the j-th element of
model output for the sample x, and yj is the j-th element of
one-hot encoded label vector y. Here σ denotes the softmax
function, which is also the invertible link function. As an
unbounded loss function, CE is shown to be non-robust in
the presence of label noise (Ghosh et al., 2017; Zhang &
Sabuncu, 2018), since the observed labels might be incorrect.
In particular, the gradients of CE can be shown as:

∂LCE(f(x,θ), y)

∂θ
= − 1

σy(z))
∇θσy(z)),

From the equation, we find that CE pays more attention to
those examples with lower confidences, i.e., hard examples
(or noisy examples). As σ(z) → 0, the unbounded loss
would approach infinity, leading to severe overfitting issues
on noisy labels.

2.2. Our Proposed Method

In this paper, we propose a general strategy that can make
the loss function noise-robust, avoiding the inherent draw-
back of overfitting the label noise. Our key idea is to bound
the logit value in the link function. Our method is motivated
by the following reformulation of the softmax CE loss:

LCE(z, y) = log(1 +
∑
j ̸=y

ezj−zy )

≤ log(1 + (K − 1) · ezmax−zmin),

(2)

where zmax and zmin denote the maximum and minimum
value in the logit vector z = f(x;θ). The above formula-
tion suggests that, if zmax − zmin is upper bounded, LCE

could not reach infinity, thereby preventing the model from
overfitting to examples with noisy labels.

To enforce the upper bound, we propose to bound the logit
values by norm, which preserves the direction of the original
logit vector. The training objective can be formalized as a
constrained optimization with inequality constraint:

minimize E(x,y)∼P [LCE (f(x;θ), y)]

subject to ∥f(x;θ)∥p ≤ α,
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where ∥·∥p denotes the p-norm (also called ℓp-norm, p ≥ 1)
of the logit vector. However, performing constrained opti-
mization in the context of modern neural networks is non-
trivial, as explicitly shown in Appendix G.2. To circumvent
the issue, we convert the objective into an alternative loss
function that can be end-to-end trainable, strictly enforcing
an upper bound of vector norm.

Logit Clipping. We propose logit clipping (dubbed Logit-
Clip), which clamps the norm of the logit vector to ensure
it is upper bounded by a constant. Formally, the new link
function is defined as:

σ̄τ (z)
.
= σ(clipτ (z)), clipτ (z)

.
=

{
τ · z

∥z∥p
if ∥z∥p ≥ τ

z else
,

(3)

where τ is the upper bound of the norm. Our method ensures
that: (1) the norm of the clamped logit vector clipτ (z) is
bounded by τ , and (2) the clamped logit vector preserves the
same direction (and prediction) as the original logit vector.
To increase flexibility, one can set the scale factor δ to a
value that differs from the threshold τ . In this form, the
clipping function can be represented as:

clipτ,δ(z)
.
=

{
δ · z

∥z∥p
if ∥z∥p ≥ τ

z else
. (4)

Note that LogitClip can be compatible with various loss
functions, as we will later demonstrate in Section 3. In
other words, we can employ LogitClip in the link function
σ of the composite losses, where the base loss function ϕ
can be CE or other existing robust loss functions. Taking
cross-entropy loss as an example, the new training objective
now becomes:

minimize E(x,y)∼P [LCE (clipτ (f(x;θ)), y)] .

In what follows, we provide a formal analysis on the bound
of the new loss function. For convenience, we denote CE
loss with LogitClip as Lτ

CE. Without loss of generality, we
use the same value for the scale factor and the threshold for
simplicity (as shown in Equation 3). We start from the case
of max norm (p = ∞), i.e., −τ ≤ clipτ (zj) ≤ τ . Then we
can derive an upper bound and a lower bound of Lτ

CE.

Proposition 2.1 (Upper and Lower Bounds of CE with
LogitClip). For any input x and any positive number τ ∈
R+, CE loss with LogitClip defined in Eq. (3) has a lower
bound and an upper bound:

log(1+(K−1)·e−2τ ) ≤ Lτ
CE (z, y) ≤ log(1+(K−1)·e2τ ).

The proof of Proposition 2.1 is provided in Appendix A.
Through Proposition 2.1, we show that cross-entropy loss
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Figure 1: The effect of τ and K on the Loss bound. The
dashed lines denote the upper bounds and the solid lines
show the lower bounds. Four colors are used to present
bounds with various values of K.

equipped with LogitClip is bounded. The conclusion can
be extended to other norms, since ∥z∥p ≤ ∥z∥q ≤ ∥z∥∞
for p ≥ q. To provide a straightforward view, we show in
Figure 1 how the hyperparameter τ and the class num K
affect the upper and lower bounds of CE with LogitClip.
When τ → ∞, we have 0 ≤ Lτ

CE ≤ ∞, which is equivalent
to the original loss LCE in Equation 1. On the other hand, if
τ → 0, the lower bound would be close to the upper bound,
which may result in difficulties for loss optimization. We
will analyze the effect of τ in detail in Section 3.

Based on proposition 2.1, we further analyze the noise
robustness of Lτ

CE with LogitClip. We denote the clean
ground-truth label of x as y⋆. Here, we follow the most
common setting where label noise is instance-independent
(Ghosh et al., 2017; Feng et al., 2020; Ma et al., 2020).
Under this assumption, label noise can be either symmet-
ric (i.e., uniform) or asymmetric (i.e., class-conditional).
Let η ∈ [0, 1] be the overall noise rate and ηjk be the
class-wise noise rate from ground-truth class j to class
k, where ηjk = p (y = k | y⋆ = j). For symmetric noise,
ηjk = η

K−1 for j ̸= k and ηjk = 1 − η for j = k. For
asymmetric noise, ηjk is conditioned on both the true class
j and the mislabeled class k. Given any classifier f and
loss function L, the risk of f under clean labels is defined
as: RL(f) = E(x,y⋆)∼Pclean [L(f(x), y⋆)] and the risk under
label noise rate η is: Rη

L(f) = E(x,y)∼Pη
noisy

[L(f(x), y)].
Let f̃ and f⋆ be the global minimizers of Rη

Lτ
CE

(f) and
RLτ

CE
(f), respectively.

Theorem 2.2. Under symmetric label noise with η ≤ 1− 1
K ,

0 ≤ RLτ
CE

(f̃)−RLτ
CE

(f⋆) ≤ ηK

(1− η)K − 1
·AK

τ ,

where AK
τ = log

(
1+(K−1)e2τ

1+(K−1)e−2τ

)
is a constant that de-

pends on τ and number of classes K.
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Theorem 2.3. Under asymmetric label noise with ηij <
1 − ηi,∀j ̸= i,∀i, j ∈ [k], where ηij = p(y = j | y⋆ =
i),∀j ̸= i and (1− ηi) = p(y = i | y⋆ = i)), then

0 ≤ Rη
Lτ

CE
(f∗)−Rη

Lτ
CE

(f̃) ≤ BK
τ ,

where BK
τ = K log

(
1+(K−1)e2τ

1+(K−1)e−2τ

)
E(x,y⋆)∼Pclean (1− ηi) >

0.

The proofs of the above two Theorems are provided in
Appendix B and Appendix C, respectively. Theorem 2.2
and Theorem 2.3 show that with LogitClip, the difference
of the risks caused by the derived hypotheses f̃ and f⋆

under noisy and clean labels is always bounded. More
specifically, the two bounds depend on the parameter τ .
With a smaller τ , both the AK

τ in Theorem 2.2 and the BK
τ

in Theorem 2.3 become smaller, indicating tighter bounds.
The above analysis provably demonstrates the noise-tolerant
ability of cross-entropy loss with LogitClip method. We
extend our analysis to an instance-dependent setting in
Appendix E. We proceed by a general analysis of composite
losses with LogitClip.

Proposition 2.4. Given any base loss ϕ(x) that satisfies the
Lipschitz condition with constant L on the domain MK

τ ≤
x ≤ NK

τ , the resulting composite loss with σ̃τ defined in
Equation 3 is bounded:∣∣Lτ

ϕ (f(x;θ), y)
∣∣ ≤ L

(
NK

τ −MK
τ

)
+
∣∣ϕ(MK

τ )
∣∣ ,

where MK
τ = 1

1+(K−1)·e2τ and NK
τ = 1

1+(K−1)·e−2τ .

The proofs of Proposition 2.4 are provided in Appendix D.
From Proposition 2.4, we show that composite losses
equipped with LogitClip are bounded if their base losses are
locally Lipschitz continuous (Sohrab, 2003) on the domain,
which depends on τ and class number K. If τ → ∞, the
domain turns to be 0 ≤ x ≤ 1. In this case, CE and Focal
loss (Lin et al., 2017) do not satisfy the Lipschitz condi-
tion and thus are unbounded. Otherwise, with a constant
τ < ∞, CE and Focal loss are locally Lipschitz continu-
ous on the domain so that they can be bounded with our
LogitClip. Similarly, this conclusion is also applicable to
existing robust losses, which generally satisfy the Lipschitz
condition. Based on the loss bound in Proposition 2.4, we
can easily derive the bounds of RLτ

ϕ
(f̃)−RLτ

ϕ
(f⋆) under

symmetric and asymmetric label noise, following our proofs
for Theorem 2.2 and Theorem 2.3. Overall, the above anal-
ysis provably shows that LogitClip can enable the resulting
composite loss to be noise-tolerant, with the locally Lips-
chitz condition for the base loss. We will further verify our
analysis experimentally in Section 3.

3. Experiments
In this section, we validate the effectiveness of our method
on three benchmarks, including simulated and real-world

datasets under various types of label noise. We show that
LogitClip not only significantly improves the robustness
of CE loss, but also broadly enhances the performance of
popular robust losses. In addition, we perform a sensitivity
analysis to validate the effect of τ .

3.1. Setups

Datasets. To verify the efficacy of LogitClip, we com-
prehensively consider four different types of label noise,
including (1) symmetric noise, (2) asymmetric noise (Zhang
& Sabuncu, 2018), (3) instance-dependent noise (Chen
et al., 2020), and (4) real-world noise on CIFAR-10/100
(Krizhevsky et al., 2009) and WebVision (Li et al., 2017)
datasets. For symmetric noise, each label can be flipped
to any other class with the same probability. In our exper-
iments, we uniformly flip the label to other classes with a
probability of 20% and 50%, respectively. For asymmetric
noise, the labels might be only flipped to similar classes (Pa-
trini et al., 2017; Zhang & Sabuncu, 2018). In our CIFAR-10
experiments, we generate asymmetric noisy labels by map-
ping TRUCK → AUTOMOBILE, BIRD → AIRPLANE, DEER
→ HORSE, and CAT ↔ DOG with probability 40%. For
CIFAR-100, we flip each class into the next circularly with
a probability of 40%. For instance-dependent noise, we
assume the mislabeling probability of each instance is de-
pendent on the corresponding input features (Chen et al.,
2020; Xia et al., 2020b). In the experiments, we use the
instance-dependent noise from PDN (Xia et al., 2020b) with
a noisy rate of 40%, where the noise is synthesized based on
the DNN prediction error. For real-world noisy labels on the
CIFAR datasets, we use the “Worst" label set of CIFAR-10N
and the “Fine" label set of CIFAR-100N (Wei et al., 2022d),
respectively.

Training details. We perform training with WRN-40-2
(Zagoruyko & Komodakis, 2016) on CIFAR-10 and CIFAR-
100. In particular, we train the network for 200 epochs using
SGD with a momentum of 0.9, a weight decay of 0.0005,
and a batch size of 128. We set the initial learning rate as
0.1, and reduce it by a factor of 10 after 80 and 140 epochs.
For our LogitClip in all experiments, we set δ = 1/τ (see
Equation 4) and use Euclidean norm, i.e., p = 2. We use
5k noisy samples as the validation dataset to tune the hy-
perparameter 1/τ in {0.1, 0.5, 1, 1.5, . . . , 4.5, 5}, then train
the model on the full training set and report the average test
accuracy in the last 10 epochs. We repeat all experiments
5 times with different random seeds. More training details
are described in Appendix F.

3.2. CIFAR-10 and CIFAR-100

On CIFAR-10 and CIFAR-100, we validate that LogitClip
can enhance the noise robustness of existing loss func-
tions. In particular, we consider the following loss func-
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Table 1: Average test accuracy (%) with standard deviation on CIFAR-10 under various types of noisy labels (over 5 runs).
The bold indicates the improved results by integrating LogitClip (LC).

Method Sym-20% Sym-50% Asymmetric Dependent Real

CE 86.73±0.72 70.88±0.46 78.34±0.54 68.26±0.21 72.85±0.32
+ LC (Ours) 91.62±0.16 84.37±0.34 86.91±0.68 86.74±0.55 82.06±0.70

Focal 87.17±0.68 70.61±0.59 79.61±0.40 69.40±0.55 72.29±0.41
+ LC (Ours) 91.91±0.46 84.65±0.74 85.42±0.80 87.02±0.22 81.78±0.37

MAE 88.92±0.36 75.73±1.15 56.74±0.71 53.92±1.07 53.26±0.67
+ LC (Ours) 90.84±0.20 86.06±0.52 83.74±0.46 87.76±0.79 82.83±0.38
PHuber-CE 90.92±0.93 74.07±0.41 81.26±0.65 75.07±0.26 76.61±0.58

+ LC (Ours) 91.90±0.65 84.64±0.19 85.54±0.38 86.96±0.72 82.41±0.82
SCE 91.48±0.78 85.38±0.47 78.65±0.60 87.05±0.58 81.65±0.35

+ LC (Ours) 91.56±0.14 86.18±0.35 84.47±1.04 87.61±0.19 82.43±0.37
GCE 90.58±0.66 85.51±0.45 79.35±0.58 87.64±0.62 81.38±0.70

+ LC (Ours) 91.21±0.52 85.90±0.15 84.24±0.84 87.69±0.21 82.44±0.11
Taylor-CE 90.44±0.40 85.71±0.26 80.92±1.37 87.20±0.98 82.32±1.12

+ LC (Ours) 91.37±0.30 86.31±0.18 84.57±0.45 88.05±0.72 82.86±0.55
NCE 90.87±0.94 68.45±0.43 83.68±0.85 73.53±0.93 79.96±0.25

+ LC (Ours) 91.70±0.27 85.88±0.89 88.44±0.53 87.59±1.21 82.11±0.64
AEL 88.59±1.03 77.48±0.88 60.90±1.27 84.55±0.71 69.40±0.38

+ LC (Ours) 90.58±0.36 86.07±0.43 82.12±0.89 87.77±0.48 82.17±0.71
AUL 76.73±0.33 75.27±0.93 59.80±0.75 73.66±0.45 63.96±1.15

+ LC (Ours) 91.31±0.85 85.98±0.74 84.38±0.53 87.93±0.86 82.46±0.66
Cores 91.56±0.23 85.32±0.36 85.30±0.63 86.65±0.83 82.28±0.28

+ LC (Ours) 91.72±0.15 86.06±0.28 86.36±0.33 87.75±0.09 82.83±0.40

tions: (1) Cross-Entropy (CE), which is the most com-
monly used classification loss. (2) Focal loss, which is
originally proposed for dense object detection and also
an unbounded classification loss function, LFocal (p, y) =

−
∑K

j=1 yj(1−pj)
γ log(pj). We set γ = 0.5 in our exper-

iments. (3) Mean absolute error (MAE) (Ghosh et al., 2017),
a symmetric loss function LMAE (p, y) =

∥∥yj − pj

∥∥
1

that
has been demonstrated to be robust to label noise. (4)
PHuber-CE (Menon et al., 2020), a loss variant of gradient
clipping for learning with noisy labels. (5) SCE (Wang
et al., 2019), which boosts CE symmetrically with a noise-
robust counterpart Reverse Cross Entropy (RCE). (6) GCE
(Zhang & Sabuncu, 2018), a bounded loss function that uses
a hyperparameter q to balance between MAE and CE. Fol-
lowing the recommended setting in the corresponding paper,
we set the hyperparameter q as 0.7. (7) Taylor-CE (Feng
et al., 2020), which controls the order of the Taylor Series to
balance between MAE and CE. (8) NCE (Ma et al., 2020),
which employs loss normalization to boost the robustness
of CE loss. (9) AEL, AUL, and AGCE (Zhou et al., 2021),
which are asymmetric loss functions. (10) Cores (Cheng
et al., 2021), a robust loss that is guaranteed to be robust to
instance-dependent label noise. We also consider the Active

Passive Loss (Ma et al., 2020) by including NCE+MAE and
NCE+AGCE.

Can LogitClip improve the noise-robustness of existing
loss functions? Table 1 and Table 2 present the average
test accuracy of models trained with different noise-robust
loss functions on CIFAR-10 and CIFAR-100, under vari-
ous types of noisy labels. A salient observation is that our
method drastically improves the noise-robustness perfor-
mance of CE by employing LogitClip. For example, on
the CIFAR-10 with instance dependent label noise, our ap-
proach improves the test accuracy of CE loss from 68.36%
to 86.60% – a 18.24% of direct improvement. On CIFAR-
100, our method also improves performance by a significant
margin. More importantly, we show that the LogitClip can
boost performance for a wide range of loss functions, includ-
ing non-robust and robust losses. For example, we observe
that, on the CIFAR-10 with asymmetric label noise, the test
accuracy of the NCE loss is improved to 88.44% when em-
ploying LogitClip, establishing strong robustness against all
types of label noise. In addition to loss functions, we show
our method can also enhance other deep learning methods
in Appendices G.1 and G.4.

5



Mitigating Memorization of Noisy Labels by Clipping the Model Prediction

Table 2: Average test accuracy (%) with standard deviation on CIFAR-100 under various types of noisy labels (over 5 runs).
The bold indicates the improved results by integrating our method.

Method Sym-20% Sym-50% Asymmetric Dependent Real

CE 64.81±1.10 47.07±1.07 47.68±0.93 52.49±0.79 55.68±0.81
+ LC (Ours) 71.59±0.76 63.16±0.74 59.04±0.18 66.24±0.71 58.61±0.35

Focal 64.76±0.14 47.06±0.56 48.59±0.73 52.87±0.57 55.01±0.65
+ LC (Ours) 71.39±0.79 62.91±0.25 59.53±0.76 66.38±0.30 58.76±0.23
PHuber-CE 71.47±0.29 60.52±0.67 47.26±0.44 64.33±0.41 56.18±0.59

+ LC (Ours) 71.89±0.31 61.46±0.75 53.95±0.38 65.08±0.17 58.64±0.49
SCE 70.11±0.31 58.56±0.78 44.91±0.62 62.86±0.74 58.27±0.88

+ LC (Ours) 71.19±0.23 60.11±0.15 58.67±0.84 64.76±0.28 59.23±0.69
GCE 63.30±0.48 9.10±0.72 40.40±0.45 27.45±0.50 49.54±0.58

+ LC (Ours) 70.22±0.52 62.14±1.20 54.41±0.64 66.25±0.85 58.77±0.76
Cores 69.97±0.56 55.37±0.84 50.24±0.38 59.85±0.61 56.49±0.53

+ LC (Ours) 71.67±0.26 62.67±0.33 63.32±0.70 66.31±0.25 59.23±0.34
NCE+MAE 70.55±0.83 61.01±0.94 53.68±0.18 65.02±0.42 59.27±0.12

+ LC (Ours) 71.59±0.65 62.85±0.52 54.51±0.73 66.58±0.18 60.08±0.34
NCE+AGCE 69.69±0.30 58.13±0.43 58.17±0.25 64.35±0.39 58.64±0.65
+ LC (Ours) 71.30±0.48 63.55±0.45 59.27±0.32 65.51±0.47 59.57±0.55
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Figure 2: The Effect of τ in LogitClip with CIFAR-10 and CIFAR-100 across various noise types.

How does the logit norm threshold τ affect the noise-
robustness of LogitClip? In Figure 2a and Figure 2b,
we ablate how the parameter τ in our method (cf. Eq. 3)
affects the noise robustness performance. The analysis is
based on CIFAR-10 and CIFAR-100 with four types of noisy
labels, including symmetric-50%, asymmetric, dependent,
and real-world noisy labels. Our results echo the analysis in
Proposition 2.1 and Theorem 2.2, where a smaller τ would
lead to a tighter bound on the difference of the risks between
using noisy and clean labels. On the other hand, too small
of τ causes a large lower bound on the loss, which is less de-
sirable from the optimization perspective. In Appendix G.3,
We clearly validate the underfitting issue caused by a small
τ with experiments on a clean dataset.

Is LogitClip effective with different architectures? To
show our proposed method is model-agnostic, we conduct
experiments on a diverse collection of model architectures

and present the results in Table 3. From the results, we
observe that LogitClip consistently improves the test per-
formance on CIFAR-10 when using SqueezeNet (Iandola
et al., 2016), ResNet (He et al., 2016), DenseNet (Huang
et al., 2017) architectures. For instance, with DenseNet,
using LogitClip boosts the test accuracy of CE from 59.34%
to 81.29%, a 21.99% of direct improvement on CIFAR-10
with Symmetric-50% noisy labels.

3.3. WebVision

Going beyond CIFAR benchmarks, we verify the effective-
ness of LogitClip on a large-scale real-world noisy dataset –
WebVision (Li et al., 2017). In the WebVision dataset, there
are 2.4 million images with real-world noisy labels, crawled
from the web (e.g., Flickr and Google) based upon the 1,000
classes of ImageNet ILSVRC12 (Deng et al., 2009). Follow-
ing the “Mini" setting used in previous works (Jiang et al.,
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Table 3: Average test performance comparison on noisy CIFAR-10 with different network architectures: SqueezeNet (Iandola
et al., 2016), ResNet (He et al., 2016), DenseNet (Huang et al., 2017). All values are percentages. The results are shown as
CE / +LC (ours).

Architecture Sym-20% Sym-50% Asymmetric Dependent Real

SqueezeNet 80.77 / 81.05 54.73 / 71.64 75.67 / 78.98 75.43 / 76.74 61.28 / 75.38
ResNet-34 74.16 / 84.88 54.48 / 74.81 73.94 / 79.69 58.03 / 76.51 63.24 / 75.25
DenseNet 80.40 / 90.85 59.34 / 81.29 76.35 / 84.35 62.27 / 84.20 63.13 / 78.93

Table 4: Top-1 validation accuracy (%) on the clean ILSVRC12 validation set of ResNet-18 models trained on WebVision
using different loss functions, under the Mini setting (Jiang et al., 2018). The bold indicates the best results. Here, “Ours"
denotes CE equipped with LogitClip and “Ours+" denotes NCE+AGCE (latest state-of-the-art (Zhou et al., 2021)) equipped
with LogitClip.

Method CE PHuber-CE GCE SCE NCE+MAE NCE+AGCE Ours Ours+

best 62.6 61.6 57.32 59.52 64.08 63.80 65.12 64.92

last 60.84 59.76 53.26 58.47 62.85 62.46 63.75 64.50

2018; Ma et al., 2020; Zhou et al., 2021), we take the first
50 classes of the Google resized image subset. For evalua-
tion, we test the trained networks on the same 50 classes of
the ILSVRC12 validation set, which can be seen as a clean
validation. For each loss, we train a ResNet-18 network us-
ing SGD for 120 epochs with an initial learning rate of 0.1,
Nesterov momentum 0.9, weight decay 5× 10−4, and batch
size 128. The learning rate is reduced by a factor of 10 after
40 and 80 epochs. We resize the images to 224× 224 and
apply the standard data augmentations, including random
cropping and random horizontal flip. As shown in Table
4, best denotes the score of the epoch where the validation
accuracy is optimal, and last denotes the scores at the aver-
age accuracy in the last 10 epochs. As shown in the table,
LogitClip not only outperforms but also enhances existing
loss functions by a meaningful margin. The results verify
that our method is effective for improving noise-robustness
in large-scale real-world scenarios.

4. Discussion
Relations to existing clipping methods. In the literature,
clipping-based methods have been studied in the context of
deep learning (Bengio et al., 1994; Zhang et al., 2020; Abadi
et al., 2016; Howard et al., 2017; Sun et al., 2021). One of
the most classic clipping-based methods is gradient clipping,
a widely used technique in recurrent neural networks (Ben-
gio et al., 1994), optimization (Hazan et al., 2015; Levy,
2016; Zhang et al., 2020), and privacy (Abadi et al., 2016;
Pichapati et al., 2019). In the simplest form, gradient clip-
ping is designed to constrain the global parameter gradient
norm at a specified threshold. With a loss function ℓθ, the
clipped gradient with a user-specified threshold τ > 0 can

be computed as:

ḡτ (θ)
.
= clipτ (g(θ)), clipτ (w)

.
=

{
τ ·w
∥w∥2

if ∥w∥2 ≥ τ

w else
,

where g(θ) denotes the gradient for a mini-batch: g(θ) .
=

1
b

∑b
n=1 ∇ℓθ (xn, yn). Different from gradient clipping

which limits the norm of the parameter gradient, our Log-
itClip method places the constraint directly on the model
output, i.e., the logit vector. Our method is thus designed
to have a direct and explicit effect in bounding the loss (cf.
Theorem 2.2 and Theorem 2.3) and preventing overfitting
to examples with noisy labels.

Indeed, recent work (Menon et al., 2020) has shown that gra-
dient clipping alone does not endow label noise robustness
to neural networks. They instead proposed a noise-robust
variant, composite loss-based gradient clipping and the re-
sulting partially Huberised loss (PHuber-CE). The results
in Section 3 have shown that LogitClip not only outper-
forms but also enhances the performance of PHuber-CE
loss. Our results overall demonstrate the superiority and
complementarity of LogitClip to gradient clipping on noise
robustness.

ReLU6 (Howard et al., 2017) is a modification of the
rectified linear unit (ReLU) to facilitate the learning of
sparse features. In particular, ReLU6 clamps the activa-
tion of the intermediate layers to a maximum value of 6,
ReLU6(x) = min(max(0,x), 6). Although ReLU6 pro-
vides a constraint on the outputs of the intermediate layers,
the resulting loss is unbounded yet since the final output can
be multiplied through the last linear layer. The empirical
results in Figure 3 show that ReLU6 cannot enhance the ro-
bustness to noisy labels while our method (LC-N) achieves
a significant improvement.
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Clipping-by-value vs. Clipping-by-norm. While our
logit clipping has demonstrated strong promise in the man-
ner of Clipping-by-norm, one may also ask: can a similar
effect be achieved by clipping the logit vector by value? In
this ablation, we show that directly constraining the max-
imum and minimum values of the logit vector does not
work well as our method. In particular, we consider the link
function as softmax with Clipping-by-value:

σ̄′
λ(z)

.
= σ(clip′λ(z)) clip′λ(zj)

.
=


λ if zj ≥ λ

−λ if zj ≤ −λ

zj else
,

where λ denotes the constant threshold. For conve-
nience, we set the maximum and minimum values as
λ and −λ, respectively. We search the best λ in
{0.1, 0.5, 1, 1.5, . . . , 4.5, 5}.

Figure 3 presents the performance comparison between our
method and the variant of Clipping-by-value, denoted as
LC-N and LC-V, respectively. While both the two logit clip-
ping methods improve the robustness of CE against noisy
labels, LC-V obtains inferior performance compared to our
proposed method, and the gaps become remarkably signifi-
cant under complex noise settings, e.g., instance-dependent
and real-world label noise. From a theoretical perspective,
CE with LC-V also satisfies the bound in Proposition 2.1
and is hence applicable for the two bounds in Theorem 2.2
and Theorem 2.3, which indicates the noise-robustness of
this method. Nevertheless, LC-V is suboptimal as the clip-
ping operation may diminish the gradients on the clipped
components of the logit vector. Besides, LC-V would also
modify the direction of the input vector and even change the
final prediction. Overall, we demonstrate that our method is
superior to the variant of clipping-by-value.

Relations to LogitNorm. A concurrent work (Wei et al.,
2022a) employs logit normalization (LogitNorm) to im-
prove the OOD detection and calibration performance. For
all training inputs, the logit vector is normalized to be a
unit vector with a constant norm and the resulting loss is
defined as: Llogit_norm(f(x; θ), y) = − log efy/(τ∥f∥)∑k

i=1 efi/(τ∥f∥) .

Our work bears three critical differences, in terms of the
problem setting, methodology, and theory.

(1) Problem setting: LogitNorm focuses on improving the
performance of detecting out-of-distribution (OOD) exam-
ples during the test time, while our work aims to enhance
the robustness against noisy labels in the training stage. The
learning tasks are fundamentally different.

(2) Methodology: We propose to clamp the logit vector to
ensure it is upper bounded by a constant, while LogitNorm
enforces the norm of logit vectors to be an exact constant for
all samples. From a constrained optimization perspective,
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Figure 3: Performance comparison among ReLU6, LC-V,
and our method (LC-N) on noisy CIFAR-10.

Table 5: Comparison between LogitClip and LogitNorm on
the CIFAR-10 dataset with various noise settings.

Method Sym-50% Asymmetric Dependent Real

LogitNorm 83.97 81.81 84.56 80.10
LogitClip 84.37 86.91 86.74 82.06

LogitNorm enforces equality constraint on the L2 norm
of logit vector, whereas LogitClip enforces inequality con-
straint. Hence, LogitClip enforces a less strict objective
than LogitNorm. Referring to the relationship between Gra-
dient Clipping (Abadi et al., 2016; Zhang et al., 2020) and
Gradient Normalization (NGD) (Hazan et al., 2015; Murray
et al., 2019), LogitClip is a unique method that differs from
LogitNorm.

In Table 5, we present the performance comparison of Log-
itClip and LogitNorm in learning with noisy labels. From
the comparison, we find that LogitClip is superior to the
LogitNorm in this task, especially in those complicated set-
tings. For example, in the asymmetric setting, LogitClip
outperforms the LogitNorm method by a large margin of
5.1%. Intuitively, LogitNorm can improve the robustness to
label noise because it also induces a loss bound. However,
it enforces a more strict constraint on all training examples,
which may make LogitNorm suboptimal in this task.

(3) Theoretical insight: LogitNorm aims to decouple the
influence of logits’ magnitude from network optimization,
and they empirically show that their method leads to more
meaningful information to differentiate in-distribution and
OOD samples. In contrast, our LogitClip is designed to
enforce an upper bound of the resulting loss, as shown in
Proposition 2.1. Furthermore, we provide a theoretical in-
terpretation to further understand why LogitClip introduces
the noise-tolerant ability and which kinds of loss functions
LogitClip can work with. In summary, our analysis builds a
connection between LogitClip and noise robustness, which
is novel to the best of our knowledge.
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5. Related Work
Robust loss functions. Designing loss functions that are
robust to noisy labels has attracted a surge of interest.
Ghosh et al. first shows that, for multi-class classifica-
tion, loss functions that satisfy the symmetric condition,∑k

i=1 L(f(x), i) = C,∀x ∈ X ,∀f , where C is a con-
stant, can be robust to label noise. One of the most classic
symmetric loss functions is Mean Absolute Error (MAE):
LMAE (z, y) = ∥y − σ(z)∥1, where σ(z) denotes the soft-
max output. Besides, NCE (Ma et al., 2020) makes any loss
function to be symmetric by loss normalization. Despite its
theoretical robustness, symmetric losses have been shown to
exhibit extremely slow convergence on complicated datasets,
since the symmetric condition is too stringent to find a con-
vex loss function (Zhang & Sabuncu, 2018; Ma et al., 2020).
To alleviate this issue, Generalized Cross Entropy (GCE)
(Zhang & Sabuncu, 2018) uses a hyperparameter q to bal-
ance between MAE and CE, adopting the negative Box-Cox
transformation strategy. Taylor Cross Entropy (Taylor-CE)
(Feng et al., 2020) balances between MAE and CE by con-
trolling the order of the Taylor Series. Partial Huberised
Cross Entropy (PHuber-CE) (Menon et al., 2020) enhances
the noise robustness of CE with a loss variant of gradient
clipping. Symmetric Cross Entropy (SCE) (Wang et al.,
2019) boosts CE symmetrically with a noise-robust coun-
terpart, Reverse Cross Entropy (RCE). Recent work (Zhou
et al., 2021) proposes a new family of robust loss functions,
termed asymmetric loss functions, which provides a global
clean weighted risk when minimizing the noisy risk for any
hypothesis class. In this work, our focus is complementary
to existing robust loss functions — we propose a strategy
that can universally enhance the noise robustness of existing
losses, across various types of label noise.

Other deep learning methods for noise-robustness. In
addition to robust loss functions, some other solutions are
also applied to learn with noisy labels (Xia et al., 2019; Li
et al., 2022b;a; Wu et al., 2021a; Chen et al., 2023; Shu et al.,
2023; 2021; Wu et al., 2021b; Ding et al., 2023; Zhu et al.,
2021b; 2022b;a; Cheng et al., 2023; Wei et al., 2023; Liu
et al., 2023; Wei et al., 2022c; Wei & Liu, 2021; Wei et al.,
2022b), including: 1) Some methods aim to design sample
weighting schemes that give higher weights on clean sam-
ples (Jiang et al., 2018; Liu & Tao, 2015; Ren et al., 2018;
Shu et al., 2019; Wei et al., 2020b). 2) Some methods pro-
pose to train on selected samples, using small-loss selection
(Han et al., 2018; Wei et al., 2020a; Yu et al., 2019; Xia
et al., 2022), GMM distribution (Arazo et al., 2019; Li et al.,
2020) or (dis)agreement between two models (Malach &
Shalev-Shwartz, 2017; Wei et al., 2020a; Yu et al., 2019).
3) Loss correction is also a popular direction based on an
estimated noise transition matrix (Hendrycks et al., 2018;
Patrini et al., 2017), or the model’s predictions (Arazo et al.,

2019; Chen et al., 2020; Reed et al., 2014; Tanaka et al.,
2018; Zheng et al., 2020). 4) Some methods apply regu-
larization techniques to improve generalization under the
settings of label noise (Fatras et al., 2021; Hu et al., 2019;
Xia et al., 2020a; Liu & Guo, 2020; Bai et al., 2021; Liu
et al., 2020; Zhu et al., 2021a; Liu et al., 2022b), such as
label smoothing (Lukasik et al., 2020; Szegedy et al., 2016),
temporal ensembling (Laine & Aila, 2016), and virtual ad-
versarial training (Miyato et al., 2018). 5) Some training
strategies for combating noisy labels are built based upon
semi-supervised learning methods (Li et al., 2020; Nguyen
et al., 2020) or self-supervised learning (Li et al., 2022a).
Compared to the above deep learning methods, designing ro-
bust loss function are generally a more straightforward and
arguably more generic solution with theoretical guarantees.

6. Conclusion
In this paper, we propose Logit Clipping (LogitClip), a
general strategy that can universally enhance the noise ro-
bustness of existing losses, across various types of label
noise. Specifically, we propose to clamp the norm of the
logit vector to ensure that it is upper bounded by a constant.
In this manner, CE loss equipped with our LogitClip method
is effectively bounded, alleviating overfitting to examples
with noisy labels. As a result, our method could mitigate the
undesirable influence of unbounded loss without modifying
the loss function. Moreover, we present theoretical analyses
to certify the noise-tolerant ability of this method. Exten-
sive experiments show that LogitClip not only significantly
improves the noise robustness of CE loss, but also broadly
enhances the generalization performance of popular robust
losses. This method is straightforward to implement with
existing losses and can be easily adopted in various practical
settings. We hope that our method inspires future theoretical
research to explore robust loss from the logit perspective.
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A. Proof of Proposition 2.1
Proof. Give a logit vector z = f(x;θ), for any class pair j and k, we have:

zmin − zmax ≤ zj − zk ≤ zmax − zmin

Recall that −τ ≤ clipτ (zj) ≤ τ , then:

−2τ ≤ zj − zk ≤ 2τ

Based on Equation (2), we have:

log(1 + (K − 1) · e−2τ ) ≤ Lτ
CE (f(x;θ), y) ≤ log(1 + (K − 1) · e2τ ).

Thus Proposition 2.1 is proved.

B. Proof of Theorem 2.2
Proof. Recall that for symmetric label noise with noise rate η, we have: ηjk = 1− η for j = k, and ηjk = η

K−1 . Then, for
any model output f(x),

Rη
Lτ

CE
(f) =E(x,y)∼Pη

noisy
[Lτ

CE(f(x), y)]

=EPxEPy⋆|xEPy|y⋆ [Lτ
CE(f(x), y)]

=E(x,y⋆)∼Pclean

(1− η)Lτ
CE(f(x), y

⋆) +
η

K − 1

∑
j ̸=y⋆

Lτ
CE(f(x), j)


=(1− η)RLτ

CE
(f) +

η

K − 1

 K∑
j=1

Lτ
CE(f(x), j)−RLτ

CE
(f)


=

(
1− ηK

K − 1

)
RLτ

CE
(f) +

η

K − 1

K∑
j=1

Lτ
CE(f(x), j).

From proposition 2.1, we have:

K log(1 + (K − 1) · e−2τ ) ≤
K∑
j

Lτ
CE(f(x), j) ≤ K log(1 + (K − 1) · e2τ ).

Thus,

βRLτ
CE

(f) +
ηK

K − 1
log(1 + (K − 1)e−2τ ) ≤ Rη

Lτ
CE

(f) ≤ βRLτ
CE

+
ηK

K − 1
log(1 + (K − 1)e2τ ).

where β = (1− ηK
K−1 ). We can also write the inequality in terms of Rη

Lτ
CE

(f):

1

β

(
Rη

Lτ
CE

(f)− ηK

K − 1
log(1 + (K − 1)e2τ )

)
≤ RLτ

CE
(f) ≤ 1

β

(
Rη

Lτ
CE

− ηK

K − 1
log(1 + (K − 1)e−2τ )

)
.

For f̃ , we have:

RLτ
CE

(f̃)−RLτ
CE

(f⋆) ≤ 1

β

(
ηK

K − 1
logAK

η +Rη
Lτ

CE
(f̃)−Rη

Lτ
CE

(f⋆)

)
,

where AK
η =

(
1+(K−1)e2τ

1+(K−1)e−2τ

)
. Since η ≤ 1− 1

K , f⋆ is the global minimizer of RLτ
CE

(f̃) and f̃ is the global minimizer of

Rη
Lτ

CE
(f̃), we have

0 ≤ RLτ
CE

(f̃)−RLτ
CE

(f⋆) ≤ ηK

(1− η)K − 1
·AK

τ ,

which concludes the proof.
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C. Proof of Theorem 2.3
Proof. For asymmetric label noise, we have

Rη
Lτ

CE
(f) =E(x,y)∼Pη

noisy
[Lτ

CE(f(x), y)]

=E(x,y⋆)∼Pclean [(1− ηi)Lτ
CE(f(x), y

⋆)] + E(x,y⋆)∼Pclean

∑
j ̸=y⋆

ηijLτ
CE(f(x), j)


≤E(x,y⋆)∼Pclean

(1− ηi)

K log(1 + (K − 1) · e2τ )−
∑
j ̸=y⋆

Lτ
CE(f(x), j)


+ E(x,y⋆)∼Pclean

∑
j ̸=y⋆

ηijLτ
CE(f(x), j)


=K log(1 + (K − 1) · e2τ ) · E(x,y⋆)∼Pclean(1− ηi)− E(x,y⋆)∼Pclean

∑
j ̸=y

λjLτ
CE(f(x), j)

 ,

where λj = (1− ηi − ηij). On the other hand, we have

Rη
Lτ

CE
(f) ≥ K log(1 + (K − 1) · e−2τ ) · E(x,y⋆)∼Pclean(1− ηi)− E(x,y⋆)∼Pclean

∑
j ̸=y⋆

λjLτ
CE(f(x), j)


Hence,

Rη
Lτ

CE
(f⋆)−Rη

Lτ
CE

(f̃) ≤ BK
τ + E(x,y⋆)∼Pclean

∑
j ̸=y⋆

λj

(
Lτ
CE

(
f̃j(x), j

)
− (Lτ

CE (f∗(x), j))
)

where BK
τ = K log

(
1+(K−1)e2τ

1+(K−1)e−2τ

)
Ep(x,y) (1− ηi). Let q− and q+ denote the lower bound and the upper bound in

Proposition 2.1. We assume Rη
Lτ

CE
(f⋆) = q−, i.e., Lτ

CE (f⋆(x), y⋆) = q−, which is only satisfied iff f⋆
j (x) = τ when

j = y⋆ and f⋆
j (x) = −τ when j ̸= y⋆. In this case, Lτ

CE (f⋆(x), j) = q+,∀j ̸= y⋆ and Lτ
CE (f⋆(x), j) ≤ q+,∀j ∈ [K].

Since f⋆ is the global minimizer of RLτ
CE

(f) and λ = (1− ηi − ηij) > 0, we have

E(x,y⋆)∼Pclean

∑
j ̸=y⋆

λj

(
Lτ
CE(f̃(x), j)− Lτ

CE (f⋆(x), j)
) ≤ 0.

Thus, we have
0 ≤ Rη

L (f⋆)−Rη
L(f̃) ≤ BK

τ ,

which concludes the proof.

D. Proof of Proposition 2.4
Proof. Let p = σ′

τ (z). Recall that −τ ≤ zj ≤ τ,∀j ∈ [K], we have:

1

1 + (K − 1) · e2τ
≤ pj ≤

1

1 + (K − 1) · e−2τ
,∀j ∈ [K],

Let MK
τ and NK

τ denote the lower and upper bound of pj . Given that the base loss ϕ(py) satisfies the Lipschitz condition
with constant L on the domain. For any py ∈ [MK

τ , NK
τ ], we have

|ϕ(py)− ϕ(MK
τ )| ≤ L|py −MK

τ | ≤ L|NK
τ −MK

τ |,
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and

|ϕ(py)| = |ϕ(py)− ϕ(MK
τ ) + ϕ(MK

τ )|
≤ |ϕ(py)− ϕ(MK

τ )|+ |ϕ(MK
τ )|

≤ L|NK
τ −MK

τ |+ |ϕ(MK
τ )|.

Since NK
τ −MK

τ ≥ 0,∀τ > 0, we have:∣∣Lτ
ϕ (f(x;θ), y)

∣∣ ≤ L
(
NK

τ −MK
τ

)
+
∣∣ϕ(MK

τ )
∣∣ ,

which concludes the proof.

E. Theoretical analysis under instance-dependent setting
In Theorem 2.2 and Theorem 2.3, we have provably shown the noise-tolerant ability of cross-entropy loss with LogitClip.
Here, we extend the theoretical analysis to an instance-dependent setting, where the noise rate ηx is a function of instance x
and ηxj may vary across classes j.

Theorem E.1. Under instance-dependent label noise with 1− ηx > ηxj ,∀x, j ̸= y⋆x, where ηxj = p(y = j | x),∀j ̸= i
and (1− ηx) = p(y = i | x, y⋆ = i)), then

0 ≤ Rη
Lτ

CE
(f∗)−Rη

Lτ
CE

(f̃) ≤ CK
τ

where CK
τ = K log

(
1+(K−1)e2τ

1+(K−1)e−2τ

)
E(x,y⋆)∼Pclean (1− ηx) > 0.

Proof. For instance-dependent label noise, we have

Rη
Lτ

CE
(f) =E(x,y)∼Pη

noisy
[Lτ

CE(f(x), y)]

=EPxEPy⋆|xEPy|x,y⋆ [Lτ
CE(f(x), y)]

=E(x,y⋆)∼Pclean [(1− ηx)Lτ
CE(f(x), y

⋆)] + E(x,y⋆)∼Pclean

∑
j ̸=y⋆

ηxjLτ
CE(f(x), j)


≤E(x,y⋆)∼Pclean

(1− ηx)

K log(1 + (K − 1) · e2τ )−
∑
j ̸=y⋆

Lτ
CE(f(x), j)


+ E(x,y⋆)∼Pclean

∑
j ̸=y⋆

ηxjLτ
CE(f(x), j)


=K log(1 + (K − 1) · e2τ ) · E(x,y⋆)∼Pclean(1− ηx)− E(x,y⋆)∼Pclean

∑
j ̸=y

λxjLτ
CE(f(x), j)

 ,

where λj = (1− ηi − ηxj). On the other hand, we have

Rη
Lτ

CE
(f) ≥ K log(1 + (K − 1) · e−2τ ) · E(x,y⋆)∼Pclean(1− ηx)− E(x,y⋆)∼Pclean

∑
j ̸=y⋆

λxjLτ
CE(f(x), j)


Hence,

Rη
Lτ

CE
(f⋆)−Rη

Lτ
CE

(f̃) ≤ CK
τ + E(x,y⋆)∼Pclean

∑
j ̸=y⋆

λxj

(
Lτ
CE

(
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)

16



Mitigating Memorization of Noisy Labels by Clipping the Model Prediction

where CK
τ = K log

(
1+(K−1)e2τ

1+(K−1)e−2τ

)
E(x,y⋆)∼Pclean (1− ηx). From the proof of Theorem 2.3, we have Lτ

CE(f̃(x), j) −
Lτ
CE (f⋆(x), j) ≤ 0,∀x, j ̸= y⋆x. Recall that λ = (1− ηx − ηxj) > 0, we have

Ep(x,y)

∑
j ̸=y⋆

λxj

(
Lτ
CE(f̃(x), j)− Lτ

CE (f⋆(x), j)
) ≤ 0.

Thus, we have
0 ≤ Rη

L (f⋆)−Rη
L(f̃) ≤ CK

τ ,

which concludes the proof.

F. More details on experimental setup
Hyperparameter setting. We conduct all the experiments on NVIDIA GeForce RTX 3090, and implement all methods
by PyTorch. We tune the hyperparameters for all compared methods and find that the optimal settings basically match
those in their original papers. Specifically, for GCE, we set q = 0.7. For SCE, we set α = 0.5 and β = 1.0. For AEL loss,
we set a = 2.5. For AUL loss, we set a = 5.5 and q = 3. For PHuber-CE, we set τ = 10 for CIFAR-10 and τ = 30 for
CIFAR-100 and WebVision. For the experiments of NCE+MAE on CIFAR-100 and WebVision, we set α = 50 and β = 1.
For NCE+AGCE on CIFAR-100, we set α = 50, β = 0.1, a = 1.8 and q = 3.0. On WebVision, we set the hyperparameters
of NCE+AGCE as α = 50, β = 0.1, a = 2.5, and q = 3.0. For the best τ of our LogitClip, it may depend on the dataset,
noise type, and the base loss. In Table 6, we present the best values of 1/τ in CE with LogitClip.

Table 6: Best Values of 1/τ for CE+LogitClip on different datasets with various noise settings.

Dataset Symmetric-20% Symmetric-50% Asymmetric Dependent Real-world

CIFAR-10 1.0 1.5 2.5 2.0 2.5

CIFAR-100 0.5 0.5 2.5 0.5 0.5

WebVision 1.2

G. More empirical results
G.1. Can LogitClip improve deep learning methods?

In the experiments shown in Section 3, we show that our method can consistently improve the noise robustness of existing
popular losses, including non-robust losses and robust losses. One may raise the question: Can LogitClip improve deep
learning methods? Here, we use DivideMix (Li et al., 2020) as the representative method to show the universality of our
LogitClip. For the experiments with DivideMix, we use the same setting as those reported in the paper of DivideMix.
Specifically, we use an 18-layer PreAct Resnet (He et al., 2016) and train it using SGD with a momentum of 0.9, a weight
decay of 0.0005, and a batch size of 128. The network is trained for 300 epochs. The warm-up period is 10 epochs for
CIFAR-10. For the hyperparameters, we set M = 2, T = 0.5, α = 4, and τ = 0.5. For DivideMix + LogitClip, we employ
the logit clipping for all the model outputs during training. The test performance for DivideMix on noisy CIFAR-10 is
reported in Table 7. From the results, we can observe that our LogitClip can consistently improve the performance of
DivideMix with a meaningful margin, which validates the universality of our method in boosting noise robustness.
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Table 7: Test performance comparison for DivideMix (Li et al., 2020) on noisy CIFAR-10 with different noisy types. The
results show that our method can boost the performance of DivideMix.

Method Symmetric-50% Asymmetric Dependent Real-world

DivideMix 94.41 92.02 94.11 92.24
+LC(Ours) 95.15 92.73 95.25 93.16

G.2. Logit Clipping vs. Norm Regularization

As demonstrated in Subsection 2.2, our training objective can be formalized as a constrained optimization with inequality
constraint. Therefore, we may consider an alternative method by simply adding the constraint via the Lagrangian multiplier,
termed Norm Regularization:

Llogit_penalty(f(x; θ), y) = LCE(f(x; θ), y) + λ∥f(x; θ)∥2.

In the experiments, we select the best λ in {0.01, 0.05, 0.1, 0.5}. Our results in Figure 4 show that Norm Regularization is
inferior to our LogitClip across four noise types, while both methods improve the test accuracy compared to Cross Entropy
loss. With Norm Regularization, we notice that the trained network can suffer from optimization difficulty and sometimes
fail to converge if λ is too large (which is needed to regularize the logit norm effectively). Overall, we show that simply
constraining the logit norm during training cannot achieve comparable performance as our LogitClip, which significantly
improves the noise robustness.

sym-20% sym-50% asym dep real
Noise Type

60
65
70
75
80
85
90
95

100

Te
st

 A
cc

ur
ac

y 
(\%

)

CE
+Reg

+LC

Figure 4: Test performance comparison among CE, Norm Regularization (+Reg), and our method (+LC) on noisy CIFAR-10
across different noise types.

G.3. Performance on Clean datasets

We evaluate the performance of LogitClip on the clean CIFAR-100 dataset with different τ . As discussed in Section 2
(Proposition 3.1), LogitClip is equivalent to vanilla cross-entropy loss if the τ is sufficiently large. Contrastively, a small τ
will induce a large lower bound on the loss value, which may lead to difficulty in loss optimization (Underfitting). As shown
in Table 8, LogitClip with a large τ achieves comparable performance as the vanilla CE loss. Besides, the performance of
LogitClip can be degraded as we decrease the value of τ , which validates the underfitting issue in our analysis.

Table 8: Performance of CE+LogitClip under different τ on the clean CIFAR-100 dataset.

τ 20 10 2 1 0.5 0.25 CE

Accuracy 75.90 75.51 74.38 73.23 68.00 46.04 75.98

G.4. Logit Clipping can improve the latest SOTA methods

In this paper, we mainly focus on improving existing robust losses. Besides, we show our method can also enhance some
other deep learning methods by improving DivideMix (see Appendix G.1). In the tables 9, we provide empirical evidence
that our method can meaningfully improve SOP (Liu et al., 2022a) and SAM (Foret et al., 2021). We use the same settings
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as Section 3 of our paper for SAM, while adopting the settings reported in their paper for SOP. These results further
demonstrate the complementarity of LogitClip with previous techniques.

Table 9: Test performance comparison for SOP (Liu et al., 2022a) and SAM (Foret et al., 2021) on noisy CIFAR-10/100
with different noisy types. The results show that our method can boost the performance of SAM and SOP.

Method CIFAR10-Sym-50% CIFAR10-ASym-40% CIFAR100-Sym-50% CIFAR100-ASym-40%

SOP 88.31 84.43 61.68 66.89
+LC(Ours) 89.20 86.03 63.85 70.41

SAM 86.16 91.60 55.23 51.90
+LC(Ours) 89.29 91.80 67.17 72.08
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