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ABSTRACT

Similarity-based representation learning has shown impressive capabilities in both
supervised (e.g., metric learning) and unsupervised (e.g., contrastive learning)
scenarios. Existing approaches effectively constrained the representation differ-
ence (i.e., the disagreement between the embeddings of two instances) to fit the
corresponding (pseudo) similarity supervision. However, most of them can hardly
restrict the variation of representation difference, sometimes leading to overfitting
results where the clusters are disordered by drastically changed differences. In
this paper, we thus propose a novel difference alignment regularization (DAR)
to encourage all representation differences between inter-class instances to be as
close as possible, so that the learning algorithm can produce consistent differ-
ences to distinguish data points from each other. To this end, we construct a new
cross-total-variation (CTV) norm to measure the divergence among representa-
tion differences, and we convert it into an equivalent stochastic form for easy op-
timization. Then, we integrate the proposed regularizer into the empirical loss for
difference-aligned similarity learning (DASL), shrinking the hypothesis space and
alleviating overfitting. Theoretically, we prove that our regularizer tightens the er-
ror bound of the traditional similarity learning. Experiments on multi-domain data
demonstrate the superiority of DASL over existing approaches in both supervised
metric learning and unsupervised contrastive learning tasks.

1 INTRODUCTION

Recently, representation learning with pairwise similarity has demonstrated great effectiveness on
many different types of data (Weinberger et al., 2006; Zadeh et al., 2016; Xu et al., 2022; Wu et al.,
2022). In this problem setting, we usually consider the pairwise relationship (e.g., similar or dissim-
ilar) between instances from the training data, and we aim to learn a generalizable feature represen-
tation to predict the pairwise similarity for the test data. This topic of similarity learning has already
attracted much attention and has also been applied to many specific tasks such as classification,
verification, and clustering (Jing & Tian, 2020; Kou et al., 2022; Zhong et al., 2020).

In the supervised case, the similarity labels of training data are usually provided by humans. This
supervised setting is also referred to as metric learning (Xing et al., 2002), where a distance metric is
learned to measure the pairwise similarity between instances in both the training and test phases. Al-
though some existing approaches can successfully learn the corresponding feature representation of
similarity metric via the nonlinear convolutional neural networks (CNNs) (a.k.a. SiameseNet (Kaya
& Bilge, 2019)), the correctly predicted distances will not be penalized any more in their empirical
loss (e.g., triplet loss (Hoffer & Ailon, 2015) and ProxyAnchor loss (Kim et al., 2020b)). This means
that these inter-class distances/differences will vary in an underconstrained range and thus may lead
to the unstable predictions that affect the model generalization on the unseen test data.

In the unsupervised (self-supervised) case, the positive (similar) pairs and negative (dissimilar) pairs
are typically generated by the pseudo supervision, e.g. the instance discrimination (Dosovitskiy
et al., 2014) and data augmentation (Chen et al., 2020) used in contrastive learning to build negative
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Figure 1: Conceptual illustration of our proposed difference-aligned regularization (DAR). Our
regularizer minimizes the higher-order difference to find the similar (first-order) representation dif-
ferences, so that we can use consistent differences for data discrimination.

and positive pairs, respectively. Nevertheless, the above issue of inconsistent distances/differences
in supervised metric learning may also exist in self-supervised contrastive learning. The abrupt
changes in the distances between different clusters make it difficult for the learning algorithm to
capture category information effectively, because the clusters with relatively small mutual distances
tend to be misconstrued as a single class. In this case, the discriminability of the pairwise distance
is also affected, and thereby reducing the reliability of the learned representation.

For both supervised and unsupervised scenarios, similarity learning has shown promising results,
especially in vision and language tasks. However, most existing approaches usually focus on how
to constrain the representation difference (i.e., the disagreement between the embeddings of two
instances) to be consistent with the corresponding similarity supervision (as shown in Fig. 1(a)-(b)).
They can hardly ensure the consistency among representation differences (i.e., the difference be-
tween differences), and these drastically changed differences may disorder the cluster distributions
in the representation space. This will lead to some overfitting results where the model prediction is
unstable/unsmooth w.r.t. the input data, and thus degrading the final classification performance. The
popular adversarial training (Kim et al., 2020a; Jiang et al., 2020) and classical regularization tech-
niques (e.g., the ℓ1/ℓ2-regularizer (Ying et al., 2009; Zadeh et al., 2016) and label smoothing (Wu
et al., 2022)) are able to mitigate this impact by enriching the critical training data or constraining
the hypotheses. However, they cannot solve this issue in essence to avoid the inconsistency among
representation differences. Recent works restricted the local neighbors to having similar distance
distributions (Cho et al., 2010; Tian et al., 2019; Wei et al., 2021), but they can only consider the
single scale of the distance value, and their constraints are limited to the adjacent relationship.

In this paper, we follow the general principle of Occam’s razor (Rasmussen & Ghahramani, 2000) to
propose a novel difference alignment regularization (DAR) that explicitly encourages representation
differences to be as close as possible. Specifically, we first construct a cross-total-variation (CTV)
norm equipped with a generic distance function to measure the disagreement between any two rep-
resentation differences, and this effectively characterizes the higher-order difference information.
Such a CTV norm is converted to an equivalent stochastic form whose computational complexity
is determined only by the small batch size. We jointly learn the traditional empirical loss with
our proposed regularizer to form the difference-aligned similarity learning (DASL), so that we can
obtain consistent representation differences to distinguish data points from each other (as shown in
Fig. 1(c)). Theoretically, we prove that the stability and generalizability of DASL can be successfully
improved with our proposed regularizer. Since DAR is quite a general technique and applicable to
many empirical losses, we implement it in both metric learning and contrastive learning approaches,
and the baseline results can be significantly improved by our method (e.g., the 2.1% improvement
for the self-supervised learning task on ImageNet-1K).

Our main contributions are as follows. (i) We propose a novel regularization technique to solve
the problem of inconsistent differences with complete theoretical guarantees. (ii) We construct a
strictly defined norm to measure the higher-order difference, which can be easily optimized with the
stochastic gradient. (iii) Experiments demonstrate that our method can outperform the state-of-the-
art approaches in both supervised and unsupervised tasks.

2 BACKGROUND AND RELATED WORK

As the supervised and unsupervised settings of similarity-based representation learning, the related
works of metric learning and contrastive learning are reviewed in this section. Throughout this paper,
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Figure 2: Toy examples to show the consistent/inconsistent differences (including distance values
and distance directions). Each column is a data distribution and the corresponding difference distri-
bution of distances (including distance values or distance directions).

we write matrices, vectors, and three-order tensors as bold uppercase characters, bold lowercase
characters, and bold calligraphic uppercase characters, respectively. ∥x∥1 and ∥x∥2 denote the ℓ1-
norm and ℓ2-norm of the vector x, respectively.

Supervised Metric Learning. Here the pairwise similarities of training data are annotated by hu-
mans, and the central problem is how to learn a distance metric or feature representation that faith-
fully reflects the pairwise similarity between each pair of instances. Both linear (Weinberger et al.,
2006; Xu et al., 2018) and nonlinear approaches (Chen et al., 2019; Liao et al., 2023) learn a generic
feature representation φ : Rm → Rh (where h is the feature dimensionality), and the correspond-
ing learnable distance is dφ(x, x̂) = ∥φ(x) − φ(x̂)∥2, which measures the similarity between
instances x, x̂ ∈ Rm. The basic learning objective is to reduce the distance dφ(x, x̂) if x and x̂ are
similar and to enlarge it if x and x̂ are dissimilar. To alleviate the overfitting issue caused by the
strong nonlinearity of φ implemented by deep neural networks, various loss functions (e.g., Augular
loss (Wang et al., 2017) and multi-tuplet/Npair loss (Sohn, 2016)) and metric forms (e.g., multi-local
metrics (Ye et al., 2016; 2019)) have been proposed to construct the generalized data pair containing
three or more data points, which successfully improve the diversity of training data. The regular-
ization technique is another way to reduce overfitting, and recent works have further introduced
adversarial training (Chen et al., 2018; Duan et al., 2018) or neighborhood consistency (Cho et al.,
2010; Tian et al., 2019; Wei et al., 2021) to constrain the hypothesis space of learning algorithms.

Unsupervised (Self-Supervised) Contrastive Learning. This task has a similar training phase
(i.e., considering the pairwise relationship) with metric learning. Existing noise contrastive esti-
mation (NCE) loss based methods usually have two critical components: instance discrimination
to generate negative pairs (Wu et al., 2018; Dosovitskiy et al., 2014) and data augmentation to
generate positive pairs (Chen et al., 2020; Jiang et al., 2020). Contrastive learning reduces the
distance dφ(x,x

+) for a positive pair (x,x+) and enlarges the distance dφ(x,xbj ) for negative
pairs {(x,xbj )}nj=1, where n is the (negative) batch size. Many works further enriched the con-
trast information within the positive pairs based on different perspectives such as adversarial per-
turbation (Kim et al., 2020a; Jiang et al., 2020) and multi-view/multi-modal learning (Tian et al.,
2020b; Sun et al., 2022). Since x and xbj might be semantically similar, yet they are undeservedly
pushed away from each other, recent works put forward to correct/reduce the false negative pairs
by conventional techniques such as positive-unlabeled learning (Chuang et al., 2020) and pseudo-
labeling (Zheng et al., 2021). Distance regularization approaches have also been proposed to reduce
the inconsistency of distance distributions (Wei et al., 2021) or to constrain the reliable range of
distance values (Chen et al., 2021).

3 METHODOLOGY

In this section, we formulate our proposed regularizer and the corresponding learning objective.

3.1 MOTIVATION

We start with toy examples to intuitively understand the importance of the consistent differences.
In the first case, we generate data points from three Gaussian distributions, where the parameters
of the three distributions are configured with different sets of means and covariances. Here, the
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inter-cluster distances are more consistent in Fig. 2(b1) than in Fig. 2(a1). In the second case,
we further generate data points from different distributions to form clusters in different directions.
The direction distributions in Fig. 2(d1) (i.e., the single direction) are more consistent than those in
Fig. 2(c1). For the two cases above, we record the corresponding difference distributions of distance
values or distance directions (as shown in Fig. 2(a2)-(d2)). Meanwhile, we sample additional data
points from the same distribution to collect the test data.

The Strong Consistency Promotes the Stable Generalizability. In the above Fig. 2, all the dif-
ferent settings can successfully distinguish clusters from each other, i.e., the training data is always
discriminated well. However, the inconsistent and consistent cases have different generalizability.
When the distances/directions are more consistent (i.e., the differences in Fig. 2(b2) and (d2) are
close to zero), the clusters become more uniformly distributed, so that the classification reliability
on the unseen test data can be improved (see the corresponding test accuracies in Appendix). Our
theoretical results also reveal that the consistent distances promote stable generalizability. This is a
critical property of a reliable similarity metric, but it is neglected in most existing approaches, so we
propose to explicitly characterize this property with a general-purpose regularizer.

3.2 FORMULATION

As the above issue of inconsistent difference may exist in both supervised metric learning and unsu-
pervised contrastive learning tasks, here we first show that their loss functions can be simply unified.

A Unified Form of Supervised and Unsupervised Losses. For the widely used (n+1)-tuplet/Npair
loss in metric learning and the NCE loss in contrastive learning, based on the given training set
X = {xi ∈Rm|i=1, 2, . . . , N} (m is the data dimensionality and N is the sample size), we aim
to learn a generic feature representation φ : Rm → Rh with the following empirical loss

Lemp(φ;X )=Ex,{bj}n
j=1

[
−log

e−dφ(x,x+)/γ

e−dφ(x,x+)/γ+
∑n

j=1e−dφ(x,xbj
)/γ

]
, (1)

where γ > 0 is a temperature parameter, and the anchor instance x is sampled from X .
Here x+ is directly obtained from the perturbed x for the unsupervised (contrastive learn-
ing) case, or it is chosen randomly from the intra-class set X +(x) = {z | yz = yx, z ∈
X \{x}} for the supervised (metric learning) case. Correspondingly, the mini-batch instances
{xb1 ,xb2 , . . . ,xbn} are directly selected from X \{x} for the unsupervised case, or from the inter-
class set X −(x) = {z | yz ̸= yx, z ∈ X } for the supervised case (yx is the class label of x).
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Figure 3: The overall framework of our proposed
difference-aligned similarity learning.

Minimizing the above Eq. (1) will constrain the
first-order difference ∇(1)

φ (x, x̂) = φ(x) −
φ(x̂) to be consistent with the corresponding
(pseudo) supervision of the two instances x and
x̂, because the distance value dφ(x, x̂) is ac-
tually the ℓ2-norm of the first-order difference
∇(1)

φ (x, x̂). Here we want to reduce the incon-
sistency among these first-order differences (as
shown in Fig. 3), so we need to further consider
the higher-order difference

∇(2)
φ (x, x̂, z, ẑ) = ∇(1)

φ (x, x̂)−∇(1)
φ (z, ẑ), (2)

where (x, x̂) and (z, ẑ) are two given data
pairs, and we use a vector-valued even function
G(·) : Rh → R+ to measure such a higher-order
difference, namely G(∇(2)

φ (x, x̂, z, ẑ)). Then we formulate our regularization term in detail.

Difference Alignment Regularization. For N training examples of X , we have C2
N first-order

differences. However, as the intra-class differences are already limited to small values by the empir-
ical loss, we only need to consider the inter-class differences {∇(1)

φ (xi,xj)}1≤i<j≤N,yi ̸=yj
. Cor-

respondingly, when we further consider the higher-order differences, we calculate the following
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Algorithm 1 Solving Eq. (8) via SGD.
Input: training set X = {xi}Ni=1; step size η > 0; regularization parameter λ > 0; batch size
n ∈ N+; randomly initialized φ(0); maximum iteration number T .
For t from 1 to T :

1). Uniformly pick (n+ 1) instances {xbj}nj=0 from X ;
2). Compute the gradients of Lemp(φ; {xbj}nj=0) and Ralign(φ; {xbj}nj=0) (namely

∂Lemp(φ; {xbj}nj=0)/∂φ and ∂Ralign(φ; {xbj}nj=0)/∂φ, respectively);
3). Update the learning parameter:

φ(t) = φ(t−1) − η(∂Lemp(φ; {xbj}nj=0)/∂φ+ λ∂Ralign(φ; {xbj}nj=0)/∂φ); (7)

End
Output: the converged φ(T ).

cumulative sum of all cases:∑
1≤i<j≤N, 1≤k<l≤N, (i,j)̸=(k,l),yi ̸=yj ,yk ̸=yl

G
(
∇(2)

φ (xi,xj ,xk,xl)
)
. (3)

We define the cross-total-variation (CTV) norm on a matrix M ∈ Rh×H (H ∈ N+) as

∥M∥ctv =
∑

1≤j<k≤H
G(Mj −Mk), (4)

where Mj is the j-th column of M , and we can rewrite Eq. (3) to a value of CTV norm:∑
1≤i<j≤N, 1≤k<l≤N, (i,j)̸=(k,l),yi ̸=yj ,yk ̸=yl

G
(
∇(2)

φ (xi,xj ,xk,xl)
)

= 2

∥∥∥∥[∇(1)
φ (x1,x2), . . . ,∇(1)

φ (xi,xj), . . . ,∇(1)
φ (xN−1,xN )

]
1≤i<j≤N,yi ̸=yj

∥∥∥∥
ctv

. (5)

Here the even function G(∇(2)
φ (xi,xj ,xk,xl)) = G(∇(2)

φ (xk,xl,xi,xj)) and each element will
be twice calculated in Eq. (3), so the corresponding CTV norm has an additional coefficient 2.
Furthermore, we have the following theorem to ensure that Eq. (4) is a strictly defined norm that
satisfies the non-negativity, homogeneity, and triangle property (the proof is given in Appendix).

Theorem 1. The function ∥ · ∥ctv : Rh×H → R+ is a strictly defined norm if and only if the measure
function G(·) : Rh → R+ is a strictly defined norm.

In practice, we can use the popular ℓ1-norm or ℓ2-norm to implement the function G. However,
the calculation of Eq. (5) involves O(N2) vectors which can be computationally costly for large-
scale data. Instead we can consider the stochastic form of the regularizer w.r.t. a mini batch
{xb0 ,xb1 , . . . ,xbn}, where n is the batch size and xb0 denotes the anchor instance x in Eq. (1)
for simplicity. Then we define the following difference alignment regularization (DAR)

Ralign(φ;X ) = E{bj}n
j=0

{∥∥∥[∇(1)
φ (xb0 ,xb1), . . . ,∇(1)

φ (xbi ,xbi+1
), . . . ,∇(1)

φ (xbn−1
,xbn)

]∥∥∥
ctv

}
,

(6)
and we can easily get that Ralign(φ;X ) = K∥[∇(1)

φ (xi,xj)]1≤i<j≤N,yi ̸=yj
∥ctv where K > 0 is

independent of the train data X and the feature representation φ. It implies that minimizing Eq. (5)
and Eq. (6) is mathematically equivalent (see Appendix for more details).

Objective & Optimization. We integrate the above regularizer in Eq. (5) into the conventional em-
pirical loss in Eq. (1), and we obtain the final learning objective of our difference-aligned similarity
learning (DASL):

min
φ∈H

{F(φ) = Lemp(φ;X ) + λRalign(φ;X )}, (8)

where λ > 0 is a trade-off parameter and H is the hypothesis space of the learning parameter. Then
we are able to optimize our learning objective Eq. (8) in a stochastic way (as shown in Fig. 3). We
need to specify the stochastic terms of both Lemp(φ;X ) and Ralign(φ;X ) for a given mini batch.
Here the traditional empirical loss Lemp(φ;X ) already has its stochastic form Lemp(φ; {xbj}nj=0),
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and our DAR also has its stochastic form Ralign(φ; {xbj}nj=0) of which the computational complex-
ity only depends on the batch size 1. Therefore, in each iteration, we can use the stochastic gradient
instead of the full gradient for fast computation (see the running time comparison in Appendix).

The detailed iteration steps based on stochastic gradient descent (SGD) (Reddi et al., 2016) are
summarized in Algorithm 1, and we have the corresponding theoretical result (in Appendix) to
investigate the convergence behavior of iteration points φ(1),φ(2), . . . ,φ(T ) obtained by Eq. (7).

4 THEORETICAL ANALYSES

In this section, we theoretically investigate the robustness and generalizability of our method.

Model Robustness. For a given data pair (x, x̂), our model prediction is the distance value
dφ(x, x̂), which measures the similarity between x and x̂. Therefore, we would like to analyze
the stability of such a distance function learned from DASL in Eq. (8) to investigate the robustness
of our method. Intuitively, for two given data pair (x, x̂) and (z, ẑ), our regularizer Ralign has al-
ready reduced the higher-order difference, so the inconsistency between the first-order difference
∇(1)

φ (x, x̂) and ∇(1)
φ (z, ẑ) (as well as the divergence between dφ(x, x̂) and dφ(z, ẑ)) should be

bounded. To be more rigorous, we have the following theorem to reveal such an upper bound.
Theorem 2. Suppose that the instances x, x̂, z, and ẑ are independently sampled from the same
distribution as the training set X . Then, for any feature representation φ learned from the objective
F(φ), we have that with probability at least 1− δ,

|dφ(x, x̂)− dφ(z, ẑ)| ≤ ξ(λ)(∥x− x̂∥2 + ∥z − ẑ∥2)max{dφ(t, t̂)|t, t̂ ∈ X }
√

[ln(2/δ)]/(2N),
(9)

where ξ(λ) = L
Lemp(φ

(0);X )
λ is monotonically decreasing w.r.t. the regularization parameter λ, and

the constant L > 0 is independent of φ and X .

From the above Eq. (9), we can clearly observe that the distance error bound is first affected by
the original distances ∥x − x̂∥2 and ∥z − ẑ∥2, and it gradually decreases with the increase of the
sample size N . This is consistent with our intuitions and empirical knowledge. Meanwhile, with
the proposed regularizer, such a bound can be further reduced, and the increased regularization
parameter will shrink the bound and make the prediction more stable/robust w.r.t. the input data.

Generalization Error. We would like to further prove that our learning algorithm also tightens
the generalization error bound (GEB) (Chen et al., 2021) of the conventional similarity learning
approach. As we know, GEB usually has a convergence rate of O(1/

√
N) for an empirical risk

minimization model. Here we do not investigate the convergence rate as a function of sample size,
but we show that a tightened GEB benefits from the regularization Ralign to validate the effectiveness
of our method. Specifically, for the underlying data distribution D , we denote the expected risk
L̃(φ;D)=E{ti|ti∼D}N

i=1
[L(φ; {ti}Ni=1)] and discuss how far it is from the empirical risk L(φ).

Theorem 3. For any φ learned from the objective F(φ) and any given constant δ ∈ (0, 1), we have
that with probability at least 1− δ,

|L(φ)− L̃(φ;D)| ≤ β(λ)ω(n)log(1 + max{dφ(t, t̂)|t, t̂ ∈ X })
√

[ln(2/δ)]/(2N), (10)

where β(λ) = (C + 2/C)/λ is monotonically decreasing w.r.t. λ and ω(n) = log
(

e2
n + 1

)
is

monotonically decreasing w.r.t. n. Here the constant C > 0 is independent of φ and X .

From the above result in Eq. (10), it is easy to observe that the error bound is dominated by two
main aspects. First, the error bound gradually decreases with the increase of the sampling number
N as well as the batch size n. This is consistent with the observations in existing works (Saunshi
et al., 2019). More importantly, we can find that such an error bound becomes tighter as λ increases,
and thus the regularization term Ralign can accelerate the empirical risk convergence to the expected
risk. Therefore, Theorem 3 shows that our method successfully improves the generalization ability
of conventional similarity learning algorithms.

1Specifically, Lemp(φ; {xbj}
n
j=0) = log[e−dφ(xb0

,x+
b0

)/γ
/(e−dφ(xb0

,x+
b0

)/γ
+
∑n

j=1e
−dφ(xb0

,x+
bj

)/γ
)]

and Ralign(φ; {xbj}
n
j=0) = ∥[∇(1)

φ (xb0 ,xb1), . . . ,∇
(1)
φ (xb0 ,xbj ), . . . ,∇

(1)
φ (xb0 ,xbn)]∥ctv.
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Figure 4: The t-SNE visualizations of our DASL and the conventional (unregularized) contrastive
learning (CL) method on STL-10 and CIFAR-10 datasets, where we can clearly observe that our
method obtains the better clustering results than the unregularized method.

5 EXPERIMENTAL RESULTS

In this section, we show experimental results on real-world datasets to validate the effectiveness of
our DASL in both the supervised metric learning and unsupervised contrastive learning tasks. We
first provide ablation studies and visualization results. Then, we compare our method with existing
state-of-the-art methods. Both the training and test processes are implemented on Pytorch (Paszke
et al., 2019) with TeslaV100 GPUs, where the regularization parameter λ is set to 0.5. The dimen-
sionality h and the parameter γ in Eq. (1) are set to 512 and 0.2, respectively. The hyper-parameters
of compared methods are set to the recommended values according to their original papers.

5.1 ABLATION STUDIES & VISUALIZATION RESULTS

In this subsection, we would like to first investigate the usefulness of our proposed regularizer
in both supervised and unsupervised scenarios. Here we use the typical ℓ2-norm (considering
its smoothness in the optimization) to implement the measure function G(·) in our regularizer.

Table 1: Classification accuracy rates of baseline methods
and our method on CAR and CUB datasets (feature em-
bedding sizes are 128 and 512).

METHOD CAR CUB

128-dim. 512-dim. 128-dim. 512-dim.

R@1 R@8 R@1 R@8 R@1 R@8 R@1 R@8

Npair(BN) w/o Reg. (λ=0) 68.36 86.01 82.37 95.12 58.12 78.72 65.38 90.82
DASL[Npair(BN)+(λ=0.1)] 68.36 88.28↑ 85.30↑ 96.10↑ 58.12 80.35↑ 66.33↑ 91.89↑
DASL[Npair(BN)+(λ=0.5)] 70.28↑ 90.36↑ 89.22↑ 96.30↑ 62.02↑ 82.30↑ 69.12↑ 92.53↑

ProxA.(R50) w/o Reg. (λ=0) 69.24 87.86 87.71 97.86 62.12 79.26 69.72 92.41
DASL[ProxA.+(λ=0.1)] 69.24 88.86↑ 89.86↑ 98.23↑ 62.12 80.95↑ 71.13↑ 92.78↑
DASL[ProxA.+(λ=0.5)] 70.28↑ 91.21↑ 92.31↑ 98.90↑ 63.13↑ 82.17↑ 73.96↑ 94.21↑

M.F.(R50) w/o Reg (λ=0) 72.42 89.53 91.76 97.21 69.33 85.12 74.42 92.53
DASL[MetricF.+(λ=0.1)] 73.56↑ 91.12↑ 91.56 97.53↑ 70.86↑ 86.25↑ 74.55↑ 92.97↑
DASL[MetricF.+(λ=0.5)] 73.56↑ 92.32↑ 92.12↑ 98.41↑ 72.35↑ 88.28↑ 75.51↑ 93.31↑

Supervised Metric Learning.
We employ different backbones
(BN-Inception (Ioffe & Szegedy,
2015) for Npair (Sohn, 2016), and
ResNet-50 (He et al., 2016) for Prox-
yAnchor (Kim et al., 2020b) and
MetricFormer (Yan et al., 2022))
to validate the effectiveness of our
approach in various settings. We
conduct experiments on CAR (Krause
et al., 2013) and CUB (Welinder et al.,
2010) datasets and record the test
accuracy of compared methods (with
500 epochs, learning rate = 10−3, and
batch size = 512 (Zhou et al., 2021; 2022a)) in Tab. 1. We can observe that our method can work
well with all the three baseline methods. Our DASL obtains relatively stable performance in various
cases with different embedding sizes. When we increase the regularization parameter λ from 0.1
to 0.5, the corresponding recognition accuracy rates are also improved, which clearly validates the
significance of our regularization term.

Unsupervised Contrastive Learning. Here we only adopt the ResNet-50 backbone for all com-
pared methods. In Fig. 5, we show the classification accuracy rates of all compared methods on
CIFAR-10 (Krizhevsky et al., 2009) and STL-10 datasets (Coates et al., 2011), where we can ob-
serve that our method consistently improves the corresponding baseline results (SimCLR (Chen
et al., 2020), HCL (Robinson et al., 2021), and BYOL (Grill et al., 2020)) in all cases. In order
to have a more intuitive understanding of the regularizer’s effect, we conduct the t-SNE embed-
ding (Van der Maaten & Hinton, 2008) to obtain the 2-dimensional data points which help us better
understand the usefulness of our introduced new term. As shown in Fig. 4, DASL can successfully
obtain more accurate separations than the baseline results.

5.2 EXPERIMENTS ON SUPERVISED METRIC LEARNING

Image Retrieval. Here we investigate the capability of DASL with the popular retrieval tasks
on CAR (Krause et al., 2013), CUB (Welinder et al., 2010), and SOP (Oh Song et al., 2016).
The further compared methods are JDR (Chu et al., 2020), IBC (Seidenschwarz et al., 2021),
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Figure 5: Classification accuracy of all methods on STL-10 and CIFAR-10 datasets, where the
(negative) batch size is from 32 to 512.

AVSL (Zhang et al., 2022), and ContextSimilarity (Liao et al., 2023). In our experiments,
all compared methods are incorporated into the ResNet-50 backbone to train end-to-end net-
work as the final distance metrics. We refer to the combinations of our method with Npair
loss and ProxyAnchor loss as DASL-NP and DASL-PA, respectively. The NMI and Recall@R
scores of all compared methods are shown in Tab. 2. From the quantitative results, we clearly
observe that MetricFormer, ContextSimilarity, and our methods obtain the higher accuracies
than other comapred methods. Compared with the two strong baseline methods, our DASL
can achieve either better or competitive NMI and Recall@R scores on the three datasets.

Table 2: Performance of all compared methods (with ResNet-50 backbone) on CAR-196, CUB-200,
and SOP datasets. The best two results are bolded and underlined, respectively.

METHOD CAR-196 CUB-200 SOP
NMI R@1 R@4 R@8 NMI R@1 R@4 R@8 NMI R@1 R@10 R@100

Npair(Sohn, 2016) 69.50 82.57 94.97 95.92 69.53 64.52 85.63 91.15 91.11 76.21 88.43 92.08
ProxyA.(Kim et al., 2020b) 75.72 87.71 95.76 97.86 72.31 69.72 87.01 92.41 91.02 78.39 90.48 96.16

JDR(Chu et al., 2020) 70.56 84.86 94.56 97.21 70.32 69.44 87.01 91.33 92.21 79.21 90.53 96.01
IBC(Seidenschwarz et al., 2021) 74.82 88.11 96.21 98.21 74.01 70.32 87.61 92.72 92.61 81.42 91.32 95.89
AVSL(Zhang et al., 2022) 75.86 91.51 97.02 98.41 73.21 71.91 88.11 93.21 91.21 79.61 91.40 96.40
MetricF.(Yan et al., 2022) 76.23 91.76 96.31 97.21 75.41 74.42 85.75 92.53 92.71 82.23 92.62 96.33
ContextS.(Liao et al., 2023) 76.32 91.80 97.14 98.41 74.01 71.91 88.82 93.42 92.61 82.63 92.56 96.74

DASL-NP (ours) 75.96↑ 86.34↑ 97.56↑ 98.87↑ 73.52↑ 69.63↑ 89.62↑ 93.61↑ 92.85↑ 79.21↑ 93.21↑ 97.86↑
DASL-PA (ours) 77.32↑ 92.31↑ 97.82↑ 98.90↑ 76.50↑ 73.96↑ 90.54↑ 94.21↑ 93.86↑ 83.32↑ 93.86↑ 97.95↑

Table 3: Accuracy rates of all compared methods on
AgeDB30, CFPFP, and MegaFace datasets.

METHOD Face Verification Face Identification (MegaFace)

Age. CFP. Mega-106 Mega-105 Mega-104

Softmax 91.30 93.39 80.43 87.11 92.83
Sph.+ℓ2-Reg(Liu et al., 2017) 93.42 94.30 88.38 92.86 95.93
Sph.+SEC(Zhang et al., 2020) 93.45 94.39 88.42 92.79 95.88
Arc.+ℓ2-Reg(Deng et al., 2019) 93.93 94.77 90.68 94.34 96.83
Arc.+SEC(Zhang et al., 2020) 93.82 94.91 90.91 94.56 96.95
DASL (Sph.+DAR) 94.21↑ 95.21↑ 89.86↑ 93.96↑ 96.25↑
DASL (Arc.+DAR) 95.33↑ 96.15↑ 91.35↑ 95.76↑ 97.28↑

Face Recognition. Here CASIA-
WebFace (Yi et al., 2014) is em-
ployed as the training set while the
test sets include AgeDB30 (Moschoglou
et al., 2017), CFP-FP (Sengupta et al.,
2016), and MegaFace (Kemelmacher-
Shlizerman et al., 2016). The batch size
is set to 256 and embedding size to 512
for all methods (with ResNet-50 back-
bone). The compared methods are dif-
ferent regularized versions of Sphereface (Zhang et al., 2020) and Arcface (Deng et al., 2019). As
shown in Tab. 3, the two cosine similarity based approaches can always perform better than the orig-
inal softmax. We also observe that our regularizer improves the performance of both Sphereface and
Arcface in all cases. For example, on MegaFace with 106 distractors, the accuracies of Sphereface
and Arcface are boosted by 1.44% and 1.20%, respectively.

5.3 EXPERIMENTS ON UNSUPERVISED CONTRASTIVE LEARNING

Image Classification. We employ ResNet-50 as our backbone and implement our method based on
SimCLR (Chen et al., 2020) and SwAV (Caron et al., 2020), and the corresponding results are denoted
as DASL (cluster-free) and DASL (cluster-used) respectively. We train our method on ImageNet-100
and ImageNet-1K (Russakovsky et al., 2015), and compare it with existing representative approaches
including contrastive multiview coding (CMC) (Tian et al., 2020a), hard negative based contrastive
learning (HCL) (Robinson et al., 2021), prototypical contrastive learning (PCL) (Li et al., 2021),
BYOL (Grill et al., 2020), and meta augmentation (MetAug) (Li et al., 2022). Then we also im-
plement our method on the popular ViT-B/16 backbone and compare it with three more methods
including DINO (Caron et al., 2021), iBOT (Zhou et al., 2022b), and PQCL (Zhang et al., 2023).
We conduct comprehensive evaluations by recording the classification accuracy rates of all methods
obtained with the fine-tuning linear softmax (i.e., the Top-1 score and Top-5 score of linear probing)
and the k-NN classification (here k = 8). From Tab. 4, we can observe that our method successfully
improves the SimCLR and HCL by at least 4% in different cases of batch size on the two datasets.
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Table 4: Classification accuracy (%) of all methods on ImageNet-100 and ImageNet-1K datasets.
The batch sizes are set to 1024 and 512 for ResNet-50 and ViT-B/16 backbones, respectively. Here
the best and second-best results are bolded and underlined, respectively.

METHOD ImageNet-100 ImageNet-1K #Arch.
100 epochs 400 epochs 300 epochs 800 epochs

k-NN Top-1 Top-5 k-NN Top-1 Top-5 k-NN Top-1 Top-5 k-NN Top-1 Top-5

SimCLR(Chen et al., 2020) 55.9 61.3 78.6 70.6 75.2 92.1 64.2 67.4 87.9 66.1 69.3 89.6 Res.50
BYOL(Grill et al., 2020) 56.3 65.5 77.8 69.2 73.2 90.1 66.9 71.2 90.5 67.2 73.2 91.5 Res.50
CMC(Tian et al., 2020a) 57.7 60.2 79.2 71.6 73.6 92.1 63.2 68.2 87.2 67.2 71.2 89.9 Res.50
PCL(Li et al., 2021) 55.9 60.2 77.2 71.5 76.1 93.2 59.5 66.5 86.7 62.2 70.5 90.5 Res.50
SwAV(Caron et al., 2020) 58.2 61.0 79.4 72.1 75.8 92.9 65.4 73.1 91.2 65.7 75.3 91.5 Res.50
HCL(Robinson et al., 2021) 55.9 60.8 79.3 70.2 74.6 92.3 64.2 71.2 91.2 67.2 71.7 90.7 Res.50
MetAug(Li et al., 2022) 59.2 61.1 79.4 69.8 75.6 93.2 65.4 74.2 91.1 67.8 76.0 92.9 Res.50
DASL (cluster-free) 60.5 65.2 79.8 73.5 76.6 93.9 68.3 72.7 91.9 68.2 76.7 92.9 Res.50
DASL (cluster-used) 61.5 67.3 80.1 74.2 77.5 94.5 69.1 74.8 92.4 69.1 76.6 93.2 Res.50

BYOL(Grill et al., 2020) 57.2 62.8 77.9 72.1 76.9 93.8 66.6 71.4 91.2 68.2 74.2 92.8 ViT-B/16
SwAV(Caron et al., 2020) 60.1 62.5 80.5 74.2 77.8 94.2 64.7 71.8 91.1 69.2 75.6 91.8 ViT-B/16
DINO(Caron et al., 2021) 61.5 67.5 81.8 78.2 79.2 95.5 72.3 76.1 92.4 76.2 78.2 94.2 ViT-B/16
iBOT(Zhou et al., 2022b) 61.5 68.2 82.2 77.5 78.5 95.2 71.5 75.0 91.9 75.2 76.0 92.6 ViT-B/16
PQCL(Zhang et al., 2023) 62.3 66.7 82.5 78.5 79.5 94.8 70.8 76.5 91.9 78.3 76.9 93.0 ViT-B/16
DASL (cluster-free) 62.5 69.5 81.1 78.4 80.1 96.1 71.5 77.8 92.7 76.2 79.2 94.5 ViT-B/16
DASL (cluster-used) 63.4 69.7 82.8 79.3 82.3 96.8 72.9 76.8 93.5 77.9 79.9 96.3 ViT-B/16

Based on the powerful ViT-B/16 encoder, our method also consistently boosts the baseline meth-
ods and outperforms the three state-of-the-art methods (DINO, iBOT, and PQCL) in most cases.
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Figure 6: Classification accuracy rates (%) of all
compared methods on the BookCorpus dataset
including six text classification tasks.

Sentence Embedding. For the BookCorpus
dataset which includes six sub-tasks MR, CR,
SUBJ, MPQA, TREC, and MSRP (Kiros et al.,
2015), we follow the experimental settings in
the baseline method quick-thought (QT) (Lo-
geswaran & Lee, 2018) to choose the neighbor-
ing sentences as positive pairs. Then, we fur-
ther compare our DASL with consistent con-
trast (CO2) (Wei et al., 2021), and uncertainty
representativeness mixing (UnReMix) (Tabassum et al., 2022), and the corresponding average
classification accuracy rates are shown in Fig. 6. Our method improves the classification ac-
curacy of baseline method QT by at least 2% on most classification benchmarks. This clearly
demonstrates that the consistent difference is not only useful in the image data but also in the
text data, and our method is a good solution to utilize such a property for model training.

Table 5: Classification accuracy rates (%) of all
compared methods on the STS dataset including
five tasks and the corresponding average scores.
METHOD STS12 STS13 STS14 STS15 STS16 Aver.
SimCSE 68.69 82.05 72.91 81.15 79.39 76.84
PCL 72.74 83.36 76.05 83.07 79.26 78.90
Inf.Min 70.22 83.48 75.51 81.72 79.88 78.16
miCSE 71.71 83.09 75.46 83.13 80.22 78.72
SCL 72.86 84.91 76.79 84.35 81.74 80.13
SACL (ours) 72.70 84.53 78.32 85.55 82.54 80.73

For the STS dataset (Agirre et al., 2016), we fol-
low the common practice in SimCSE (Gao et al.,
2021) to use the pre-trained checkpoints of
BERT (Devlin et al., 2018), and we further com-
pare our method with information minimiza-
tion contrastive learning (InforMin-CL) (Chen
et al., 2022), misCSE (Klein & Nabi, 2022), and
smoothed contrastive learning (SCL) (Wu et al.,
2022). As we can observe from Tab. 5, DASL
obtains considerable improvements on the baseline method SimCSE. Meanwhile, our method can
outperform the other two representative methods misCSE and InforMin-CL in most cases. Our
DASL also achieves the best average score in all compared methods.

6 CONCLUSION

In this paper, we investigated the issue of inconsistent representation differences in traditional sim-
ilarity learning. We proposed a novel DAR regularizer to encourage the learning algorithm to seek
for the close differences for data discrimination. To this end, we built a new CTV norm to mea-
sure the divergence among representation differences, and we showed that it can be easily solved
by SGD. Our proposed DAR is quite a generic technique and we can easily deploy it in both met-
ric learning and contrastive learning tasks with negligible computation overhead. We conducted
extensive theoretical analyses that guarantee the effectiveness of our method. Comparison experi-
ments on real-world datasets across multiple domains indicated that our learning algorithm acquires
more reliable feature representations than state-of-the-art methods. As this paper merely focused
on the unsupervised and fully supervised cases, in the future we plan to explore the inconsistent
representation differences in semi-supervised and weakly supervised scenarios.
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APPENDIX

This part is the appendix of our manuscript. It includes the additional experiments and the mathe-
matical proofs of theorems.

A ADDITIONAL EXPERIMENTS

A.1 NUMERICAL RESULTS OF FIG. 2

In Fig. 2, the 1000 points of each cluster (as the training data) are generated from the Gaussian
distributions, and the corresponding distribution parameters are listed in Tab. 6. Meanwhile, we
sample additional data points from the same distribution to collect the test data (200 points for each
cluster).

We conduct k-NN on both training and test data to record the corresponding classification accuracy
rates. The results are listed in Tab. 7, where we can clearly find that all cases have achieved the
satisfied training accuracy. However, the cases of consistent differences can obtain better test results
than the cases of inconsistent differences.

Table 6: The distribution parameters (the mean vector and covariance matrix) of clusters in Fig. 2.
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Table 7: Training and test accuracy rates of all cases (%).
(a1), Training/Test (b1), Training/Test (c1), Training/Test (d1), Training/Test

Cluster1 99.1/75.3 99.1/85.6 98.5/85.1 98.5/85.1

Cluster2 99.2/76.3 98.5/86.7 99.1/85.2 98.5/86.4

Cluster3 99.8/89.3 98.8/95.3 98.1/74.1 98.1/85.2

Average 99.4/80.3 98.8/89.2 98.6/81.5 98.4/85.6

A.2 EXPERIMENTS ON GRAPH EMBEDDING

We test our method on challenging graph data to further investigate the generalizability of our
method. Here two types of datasets are considered, those are the biochemical molecules and the so-
cial networks, including DD, PTC, IMDB-B, IMDB-M, RDT-B, PROTEINS, NCI1, and MUTAG (Ya-
nardag & Vishwanathan, 2015).

Here we use the representative method InfoGraph (Sun et al., 2020) as the baseline, and we follow
the common practice for the downstream graph-level classification task on datasets. Note here we
fine-tune a support vector machine (SVM) (Cortes & Vapnik, 1995) on the learned feature represen-
tation to evaluate the final classification performance by using the 10-fold cross-validation. We split
the dataset into the training, test, and validation sets at the proportion of 8/1/1 and report the mean
classification accuracy with standard deviation after 5 runs followed by a linear SVM classifier. The
SVM is trained using cross-validation on training folds of data and the model for testing is selected
by the best validation performance. Our compared methods include HCL, GraphCL (You et al.,
2020), JOAO (You et al., 2021), and GroupCL (Xu et al., 2022).

From the results shown in Fig. 7, we observe that our DASL consistently improves the baseline
method InfoGraph in all eight cases. Meanwhile, compared with the other graph contrastive learning
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Figure 7: Accuracy rates of compared methods on traditional unsupervised graph embedding tasks
including eight popular datasets.

approaches, our method does as well as GraphCL, JOAO, and GroupCL. Furthermore, for most of
the eight datasets, our method can outperform the three methods with a higher accuracy mean and
lower accuracy variance.

A.3 VISUALIZATION OF THE TRAINING CURVES

In our experiments, we further record the values of empirical losses and regularization terms of the
traditional methods (including the Npair loss with BN and the ProxyAnchor loss with ResNet-50)
and our approach in each epoch.

We can find from Fig. 8 that the loss functions of traditional approaches can always decrease well and
converge to stable values, but the inconsistencies among representation differences (i.e., the CTV
norm values) are still large. After introducing the DAR term in our approach, the empirical loss can
still converge to a stable value, and more importantly the corresponding CTV norm is effectively
reduced and controlled, so that the final classification performance is successfully improved (as
shown in Tab. 1).
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Figure 8: Training curves of the baseline methods and our method on the CAR dataset.

Table 8: Training time of the baseline methods and our proposed method (100 epochs, in hours).

METHOD
CIFAR-10 ImageNet-100

512 1024 512 1024

SimCLR (Chen et al., 2020) 2.3 1.3 10.9 5.5
SwAV (Caron et al., 2020) 2.6 1.7 11.5 5.8
DASL (SimCLR+DAR) 2.5 1.6 11.3 5.9
DASL (SwAV+DAR) 2.6 1.9 11.8 5.9

A.4 RUNNING TIME COMPARISON

In our regularization term, we adopted the ℓ2-norm to implement the measure function G(·) of CTV
norm. We would like to investigate if the efficiency of the learning algorithm will be affected by
the calculation of CTV norm. Therefore, here we further provide experiments to record the training
time of our method as well as the corresponding baseline method. Specifically, we use two NVIDIA
TeslaV100 GPUs to train our method based on SimCLR and SwAV with 100 epochs, respectively.
For each case, we set the batch size to 512 and 1024.

In Tab. 8, we can find that the proposed regularizer only brings in very little additional time con-
sumption. This is because the gradient calculation of CTV norm is independent to the size of training
data, so the training time is still acceptable in practice use.

A.5 PARAMETRIC SENSITIVITY

Here we investigate the parametric sensitivity of the regularization parameter λ in our method.
Specifically, we change λ in [0.01, 5], and we record the classification accuracy of our method
on STL-10 and CIFAR-10 datasets (batch size=256/512/1024, epochs=100). Tab. 9 shows that the
accuracy variation of our method is smaller than 2%. These results clearly demonstrate that the
regularization parameters λ is very stable within a given range. It implies that the hyper-parameter
of our method can be easily tuned in practice use.
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Table 9: Parametric sensitivity of λ on the STL-10 and CIFAR datasets (%). Here λ is changed
within [0.01, 5].

dataset (batchsize) 0.01 0.1 0.5 1.5 5

STL-10 (256) 75.8 76.5 77.2 76.9 76.2
STL-10 (512) 77.6 78.3 79.5 79.5 78.2
STL-10 (1024) 79.9 80.5 81.3 80.9 80.5

CIFAR-10 (256) 87.5 87.5 88.3 88.1 87.5
CIFAR-10 (512) 89.7 90.7 91.2 91.0 90.8
CIFAR-10 (1024) 90.2 91.6 92.5 92.6 91.5

A.6 CONVERGENCE ANALYSIS

We have the following theoretical result to investigate the convergence behavior of iteration points
φ(1),φ(2), . . . ,φ(T ) obtained by Eq. (7).

Theorem 4. We assume that function F(φ) has a δ-bounded gradient (∥∇F(φ)∥2 < δ) and
let η =

√
2(F(φ(0))−F(φ∗))/(Sδ2T ), and then for iteration points in Algorithm 1, we have

min0≤t≤TE[ ∥∇F(φ(t))∥2]≤
√
2S∆F/Tδ, where ∆F = F(φ(0))−F(φ∗) and S > 0 is a Lips-

chitz constant such that ∥∇F(φ)−∇F(φ′)∥2≤S∥φ−φ′∥2.

Notice that in the above theorem, the variables S, ∆F , and δ are all independent of T . The gradients
of the iteration points of our final learning objective F(φ) will gradually decrease to 0. It means that
the iteration points φ(1),φ(2), . . . ,φ(T ) will converge to a stationary point of the learning objective
F with a convergence rate O(1/

√
T ), where T is the number of iterations.

B PROOFS

B.1 THE EQUIVALENCE BETWEEN EQ (5) AND EQ. (6)

According to the definition of CVT norm, we have that

Ralign(φ;X )

= E{bj}n
j=0

{∥∥∥[∇(1)
φ (xb0 ,xb1),∇(1)

φ (xb1 ,xb2), . . . ,∇(1)
φ (xbn−1 ,xbn)

]∥∥∥
ctv

}
=

1

Cn+1
N

∑
1≤i<j≤N, 1≤k<l≤N, (i,j)̸=(k,l),yi ̸=yj ,yk ̸=yl

C(n+1)−4
N G

(
∇(1)

φ (xi,xj)−∇(1)
φ (xk,xl)

)
=

1

Cn+1
N

∑
1≤i<j≤N, 1≤k<l≤N, (i,j)̸=(k,l),yi ̸=yj ,yk ̸=yl

C(n+1)−4
N G

(
∇(2)

φ (xi,xj ,xk,xl)
)

=
C(n+1)−4
N

Cn+1
N

∑
1≤i<j≤N, 1≤k<l≤N, (i,j)̸=(k,l),yi ̸=yj ,yk ̸=yl

G
(
∇(2)

φ (xi,xj ,xk,xl)
)

= 2
C(n+1)−4
N

Cn+1
N

∥∥∥∥[∇(1)
φ (x1,x2), . . . ,∇(1)

φ (xi,xj), . . . ,∇(1)
φ (xN−1,xN )

]
1≤i<j≤N,yi ̸=yj

∥∥∥∥
ctv

,

(11)

where the constant C(n+1)−4
N /Cn+1

N only depends on the batch size and sample size.

B.2 DISCUSSION ON THE TRIVIAL SOLUTION RALIGN(φ;X ) = 0

Here we would like to discuss if our learning algorithm will obtain the trivial solution
Ralign(φ;X ) = 0. We prove that there exists λ0 > 0 such that ∀λ ∈ (0, λ0), Ralign(φ

∗
λ;X ) > 0,

18



Published as a conference paper at ICLR 2024

where φ∗
λ ∈ argmin

φ∈H
Lemp(φ;X ) + λRalign(φ;X ). To be specific, we suppose that

φ∗
0 ∈ argmin

φ∈H
Lemp(φ;X ), (12)

and by using the definition of empirical loss, we have that

Ralign(φ
∗
0;X ) = Q > 0. (13)

We let A(λ) = Lemp(φ;X ) + λRalign(φ;X ), and we have that A(λ) is always continuous w.r.t.
λ, and thus we have

lim
λ→0

A(λ) = A(0) = Lemp(φ
∗
0;X ), (14)

and
lim
λ→0

Ralign(φ
∗
λ;X ) = Ralign(φ

∗
0;X ) = Q. (15)

By the property of a positive limitation, we have that there exists λ0 > 0 such that ∀λ ∈ (0, λ0)

Q

2
≤ Ralign(φ

∗
λ;X ) ≤ 3Q

2
, (16)

where λ0 is a sufficiently small number satisfying |Ralign(φ
∗
λ;X ) − Q| ≤ ϵ = Q

2 . It clearly
reveals that the trivial solution will not be incurred by our learning algorithm with the controllable
regularization parameter λ.

B.3 PROOF FOR THEOREM 1

Proof. For a matrix M ∈ Rh×H , the non-negativity of CTV norm can be directly obtained from
the non-negative element G(Mj −Mk). For the homogeneity, we have that ∀µ ∈ R

∥µM∥ctv

=
∑

1≤j<k≤H
G(µMj − µMk)

=
∑

1≤j<k≤H
G(µ(Mj −Mk))

=
∑

1≤j<k≤H
µG((Mj −Mk))

= µ∥M∥ctv, (17)

where the third equation is based on the homogeneity of the measure function G(·). Then, for the
triangle property, we have that ∀P ,Q ∈ Rh×H

∥P +Q∥ctv

=
∑

1≤j<k≤H
G((Pj +Qj)− (Pk +Qk))

=
∑

1≤j<k≤H
G((Pj − Pk) + (Qj −Qk))

=
∑

1≤j<k≤H
G(Pj − Pk) + G(Qj −Qk)

=
∑

1≤j<k≤H
G(Pj − Pk) +

∑
1≤j<k≤L

G(Qj −Qk)

= ∥P ∥ctv + ∥Q∥ctv, (18)

which completes the proof.

B.4 PROOF FOR THEOREM 2

Lemma 1. For independent random variables t1, t2, . . . , tn ∈ T and a given function ω : T n → R,
if ∀v′i ∈ T (i = 1, 2, . . . , n), the function satisfies

|ω(t1, . . . , ti, . . . , tn)− ω(t1, . . . , t
′
i, . . . , tn)| ≤ ρi, (19)

then for any given µ > 0, it holds that P{|ω(t1, . . . , tn) − E[ω(t1, . . . , tn)]| > µ} ≤
2e−2µ2/

∑n
i=1 ρ2

i .
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Proof. Firstly, we denote that

ω =
1

N

∑
t,t̂∈X

dφ(t, t̂), (20)

and

ω̃r =
1

N

 ∑
t,t̂∈X ,(t,t̂)̸=(tr,t̂r)

dφ(t, t̂) + dφ(x, x̂)

 , (21)

where x and x̂ obey the same distribution with the instances in X . Then we have that

|ω − ω̃r|

=
1

N

∣∣∣∣∣∣
∑

t,t̂∈X ,(t,t̂)̸=(tr,t̂r)

dφ(t, t̂) + dφ(x, x̂)−
∑

t,t̂∈X

dφ(t, t̂)

∣∣∣∣∣∣
≤ 1

N

[
dφ(tr, t̂r)− dφ(x, x̂)

]
≤

L
Lemp(φ;X )

λ

(
∥x− x̂∥2 − ∥tr, t̂r∥2

)
+max{dφ(t, t̂)|t, t̂ ∈ X })

N
, (22)

where L > 0 is the Lipschitz constant of dφ. Meanwhile, we have

1

N

∑
t,t̂∈X

dφ(t, t̂)− E

 ∑
t,t̂∈X

dφ(t, t̂)−


= dφ(t, t̂)− dφ(x, x̂). (23)

By Lemma 1, we let that for all i = 1, 2, . . . , N

ρi =
L

Lemp(φ;X )
λ

(
∥x− x̂∥2 − ∥tr, t̂r∥2

)
+max{dφ(t, t̂)|t, t̂ ∈ X })

N
, (24)

so that we have

P

∣∣∣Lemp(φ;X )− L̃emp(φ;D)
∣∣∣ < L

Lemp(φ;X )
λ

(
∥x− x̂∥2 − ∥tr, t̂r∥2

)
+max{dφ(t, t̂)|t, t̂ ∈ X })

N

√
ln(2/δ)
2N


= 1− 2e−2µ2/

∑N
i=1 ρ2

i

≥ 1− 2e
−2N(η

√
[ln(2/δ)]/(2N))2

max2((C+2/C)ω(n)log(1+max{dφ(t,t̂)|t∈X })α)

= 1− 2e−2N
(√

[ln(2/δ)]/(2N)
)2

= 1− 2e−ln(2/δ)

= 1− δ, (25)

where η =
L

Lemp(φ;X )

λ (∥x−x̂∥2−∥tr,t̂r∥2)+max{dφ(t,t̂)|t,t̂∈X })
N and µ = θ

√
[ln(2/δ)]/(2N). It

means that have that with probability at least 1− δ,

|dφ(x, x̂)−dφ(t, t̂)| ≤
L

Lemp(φ;X )
λ

(
∥x− x̂∥2 − ∥tr, t̂r∥2

)
+max{dφ(t, t̂)|t, t̂ ∈ X })

N

√
ln(2/δ)
2N

.

(26)
Similarly, for another data pair z and ẑ obey the same distribution with the instances in X , we have
that with probability at least 1− δ,

|dφ(z, ẑ)−dφ(t, t̂)| ≤
L

Lemp(φ;X )
λ

(
∥z − ẑ∥2 − ∥tr, t̂r∥2

)
+max{dφ(t, t̂)|t, t̂ ∈ X })

N

√
ln(2/δ)
2N
(27)
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By combining the above two equations, we thus have

|dφ(z, ẑ)− dφ(x, x̂)|
= |dφ(z, ẑ)− dφ(t, t̂) + dφ(t, t̂)− dφ(x, x̂)|
≤ |dφ(z, ẑ)− dφ(t, t̂)|+ |dφ(t, t̂)− dφ(x, x̂)|

≤
L

Lemp(φ;X )
λ

(
∥x− x̂∥2 − ∥tr, t̂r∥2 + ∥z − ẑ∥2 − ∥tr, t̂r∥2

)
+max{dφ(t, t̂)|t, t̂ ∈ X })

N

√
ln(2/δ)
2N

≤
L

Lemp(φ
(0);X )
λ (∥x− x̂∥2 + ∥z − ẑ∥2) + max{dφ(t, t̂)|t, t̂ ∈ X })

N

√
ln(2/δ)
2N

≤ ξ(λ) (∥x− x̂∥2 + ∥z − ẑ∥2) + max{dφ(t, t̂)|t, t̂ ∈ X })
N

√
ln(2/δ)
2N

, (28)

where ξ(λ) = L
Lemp(φ

(0);X )
λ is monotonically decreasing w.r.t. λ. The proof is completed.

B.5 PROOF FOR THEOREM 3

Proof. We prove Theorem 4 by analyzing the perturbation (i.e., ρi in the above Eq. (19)) of the loss
function L.

We denote that

ω = Lemp(φ;X ) =
1

N

N∑
i=1

−log
e−dφ(xi,x

+)/γ

e−dφ(xi,x+)/γ+
∑n

j=1e−dφ(xi,xbj
)/γ

, (29)

and

ω̃r =
1

N

 N∑
i ̸=r

−log
e−dφ(xi,x

+)/γ

e−dφ(xi,x+)/γ+
∑n

j=1e−dφ(xi,xbj
)/γ

,

− log
e−dφ(x̂, x̂+)/γ

e−dφ(x̂, x̂+)/γ+
∑n

j=1e−dφ(x̂,x̂bj
)/γ

 ,

(30)
where (x̂, {x̂bj}nj=1) is an arbitrary mini-batch from the sample space. Then we have that

|ω − ω̃r|

=
1

N

∣∣∣∣∣log
e−dφ(x̂, x̂+)/γ

e−dφ(x̂, x̂+)/γ+
∑n

j=1e−dφ(x̂,x̂bj
)/γ

− log
e−dφ(xr,x

+)/γ

e−dφ(xr,x+)/γ+
∑n

j=1e−dφ(xr,xbj
)/γ

∣∣∣∣∣
≤ 1

N
log

[
e−dφ(x̂, x̂+)/γ(e−dφ(xr,x

+)/γ+
∑n

j=1e−dφ(xr,xbj
)/γ)

e−dφ(xr,x+)/γ(e−dφ(x̂, x̂+)/γ+
∑n

j=1e−dφ(x̂,x̂bj
)/γ)

]

≤ (C + 2/C)ω(n)log(1 + max{dφ(t, t̂)|t, t̂ ∈ X })
αN

, (31)

where ω(n) = log
(

e2
n + 1

)
. Meanwhile, we have

1

N

N∑
i=1

−log
e−dφ(xi,x

+)/γ

e−dφ(xi,x+)/γ+
∑n

j=1e−dφ(xi,xbj
)/γ

−E

(
−log

e−dφ(xi,x
+)/γ

e−dφ(xi,x+)/γ+
∑n

j=1e−dφ(xi,xbj
)/γ

)
= Lemp(φ;X )− L̃emp(φ;D). (32)

By Lemma 1, we let that for all i = 1, 2, . . . , N

ρi =
(C + 2/C)ω(n)log(1 + max{dφ(t, t̂)|t, t̂ ∈ X })

αN
, (33)
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so that we have

P

{∣∣∣Lemp(φ;X )− L̃emp(φ;D)
∣∣∣ < (C + 2/C)ω(n)log(1 + max{dφ(t, t̂)|t, t̂ ∈ X })

α

√
ln(2/δ)
2N

}
= 1− 2e−2µ2/

∑N
i=1 ρ2

i

≥ 1− 2e
−2N(η

√
[ln(2/δ)]/(2N))2

max2((C+2/C)ω(n)log(1+max{dφ(t,t̂)|t∈X })α)

= 1− 2e−2N
(√

[ln(2/δ)]/(2N)
)2

= 1− 2e−ln(2/δ)

= 1− δ, (34)

where η =
(C+2/C)ω(n)log(1+max{dφ(t,t̂)|t∈X })

α and µ = θ
√
[ln(2/δ)]/(2N). The proof is com-

pleted.

B.6 PROOF FOR THEOREM 4

Proof. Firstly, by using the Lipschitz continuity of F(φ) we have that

E[F(φ(t+1))]− E[F(φ(t+1))]

≤ E[ ∥∇F(φ(t+1))− (φ(t+1) −φ(t)])∥22 + S/2∥φ(t+1) −φ(t)∥22]
≤ −ηtE[∥∇F(φ(t))∥22] + (Sη2t /2)E[∥∇Fbi(φ

(t))∥22]
≤ −ηtE[∥∇F(φ(t))∥22] + (Sη2t /2)δ

2, (35)

where the second inequality follows from the fact that φ(t+1) is updated by Algorithm 1. Then, we
have that

E[∥∇F(φ(t+1))∥22] ≤ (1/ηt)E[F(φ(t))−F(φ(t+1))] + (Lηt/2)δ
2, (36)

and thus
E[∥∇F(φ(0))∥22] ≤ (1/η0)E[F(φ(0))−F(φ(1))] + (Sη0/2)δ

2,

E[∥∇F(φ(1))∥22] ≤ (1/η1)E[F(φ(1))−F(φ(2))] + (Sη1/2)δ
2,

...

E[∥∇F(φ(T−1))∥22] ≤ (1/ηT−1)E[F(φ(T−1))−F(φ(T ))] + (SηT−1/2)δ
2.

(37)

Finally, we combine all inequalities in the above Eq. (37) by letting η0 = η1 = · · · = ηT−1 = η.
Then we have

min
0≤t≤T−1

E[ ∥∇F(φ(t))∥2]

≤ 1

T

T−1∑
t=0

E[ ∥∇F(φ(t))] + (Sη/2)δ2

≤ 1

Tη
E[F(φ(0))−F(φ(t))] + (Sη/2)δ2

≤ 1

Tη
(F(φ(0))−F(φ∗)) + (Sη/2)δ2

≤ 1√
T
((F(φ(0))−F(Q∗,φ∗))/c+ (Sc/2)δ2), (38)

where c = η
√
T . We set c =

√
2(F(φ(0))−F(φ∗))/(Sδ2), and we have

min
0≤t≤T−1

E[ ∥∇F(φ(t))∥2] ≤
√
2S(F(φ(0))−F(φ∗))/T )δ, (39)

which completes the proof.
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